Loading…

Electrode SOC and SOH estimation with electrode-level ECMs

Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (E...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Lopetegi, Iker, Fernandez, Sergio, Plett, Gregory L, Trimboli, M Scott, Iraola, Unai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lopetegi, Iker
Fernandez, Sergio
Plett, Gregory L
Trimboli, M Scott
Iraola, Unai
description Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119817274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119817274</sourcerecordid><originalsourceid>FETCH-proquest_journals_31198172743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs1JTS4pyk9JVQj2d1ZIzEsB0h4KqcUlmbmJJZn5eQrlmSUZCqkwVbo5qWWpOQquzr7FPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wFGhCfFZ-aVEeUCre2NDQ0sLQ3MjcxJg4VQA-2DXL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119817274</pqid></control><display><type>article</type><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><source>Publicly Available Content (ProQuest)</source><creator>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</creator><creatorcontrib>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</creatorcontrib><description>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Batteries ; Electric charge ; Electrodes ; Equivalent circuits ; Estimates ; Management systems ; Parameter estimation ; Performance degradation ; Power management ; State estimation ; State of charge</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119817274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Lopetegi, Iker</creatorcontrib><creatorcontrib>Fernandez, Sergio</creatorcontrib><creatorcontrib>Plett, Gregory L</creatorcontrib><creatorcontrib>Trimboli, M Scott</creatorcontrib><creatorcontrib>Iraola, Unai</creatorcontrib><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><title>arXiv.org</title><description>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</description><subject>Batteries</subject><subject>Electric charge</subject><subject>Electrodes</subject><subject>Equivalent circuits</subject><subject>Estimates</subject><subject>Management systems</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>Power management</subject><subject>State estimation</subject><subject>State of charge</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs1JTS4pyk9JVQj2d1ZIzEsB0h4KqcUlmbmJJZn5eQrlmSUZCqkwVbo5qWWpOQquzr7FPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wFGhCfFZ-aVEeUCre2NDQ0sLQ3MjcxJg4VQA-2DXL</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lopetegi, Iker</creator><creator>Fernandez, Sergio</creator><creator>Plett, Gregory L</creator><creator>Trimboli, M Scott</creator><creator>Iraola, Unai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><author>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31198172743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Electric charge</topic><topic>Electrodes</topic><topic>Equivalent circuits</topic><topic>Estimates</topic><topic>Management systems</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>Power management</topic><topic>State estimation</topic><topic>State of charge</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopetegi, Iker</creatorcontrib><creatorcontrib>Fernandez, Sergio</creatorcontrib><creatorcontrib>Plett, Gregory L</creatorcontrib><creatorcontrib>Trimboli, M Scott</creatorcontrib><creatorcontrib>Iraola, Unai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopetegi, Iker</au><au>Fernandez, Sergio</au><au>Plett, Gregory L</au><au>Trimboli, M Scott</au><au>Iraola, Unai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrode SOC and SOH estimation with electrode-level ECMs</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3119817274
source Publicly Available Content (ProQuest)
subjects Batteries
Electric charge
Electrodes
Equivalent circuits
Estimates
Management systems
Parameter estimation
Performance degradation
Power management
State estimation
State of charge
title Electrode SOC and SOH estimation with electrode-level ECMs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrode%20SOC%20and%20SOH%20estimation%20with%20electrode-level%20ECMs&rft.jtitle=arXiv.org&rft.au=Lopetegi,%20Iker&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119817274%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31198172743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119817274&rft_id=info:pmid/&rfr_iscdi=true