Loading…
Electrode SOC and SOH estimation with electrode-level ECMs
Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (E...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lopetegi, Iker Fernandez, Sergio Plett, Gregory L Trimboli, M Scott Iraola, Unai |
description | Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119817274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119817274</sourcerecordid><originalsourceid>FETCH-proquest_journals_31198172743</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs1JTS4pyk9JVQj2d1ZIzEsB0h4KqcUlmbmJJZn5eQrlmSUZCqkwVbo5qWWpOQquzr7FPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wFGhCfFZ-aVEeUCre2NDQ0sLQ3MjcxJg4VQA-2DXL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119817274</pqid></control><display><type>article</type><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><source>Publicly Available Content (ProQuest)</source><creator>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</creator><creatorcontrib>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</creatorcontrib><description>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Batteries ; Electric charge ; Electrodes ; Equivalent circuits ; Estimates ; Management systems ; Parameter estimation ; Performance degradation ; Power management ; State estimation ; State of charge</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119817274?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Lopetegi, Iker</creatorcontrib><creatorcontrib>Fernandez, Sergio</creatorcontrib><creatorcontrib>Plett, Gregory L</creatorcontrib><creatorcontrib>Trimboli, M Scott</creatorcontrib><creatorcontrib>Iraola, Unai</creatorcontrib><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><title>arXiv.org</title><description>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</description><subject>Batteries</subject><subject>Electric charge</subject><subject>Electrodes</subject><subject>Equivalent circuits</subject><subject>Estimates</subject><subject>Management systems</subject><subject>Parameter estimation</subject><subject>Performance degradation</subject><subject>Power management</subject><subject>State estimation</subject><subject>State of charge</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs1JTS4pyk9JVQj2d1ZIzEsB0h4KqcUlmbmJJZn5eQrlmSUZCqkwVbo5qWWpOQquzr7FPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wFGhCfFZ-aVEeUCre2NDQ0sLQ3MjcxJg4VQA-2DXL</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Lopetegi, Iker</creator><creator>Fernandez, Sergio</creator><creator>Plett, Gregory L</creator><creator>Trimboli, M Scott</creator><creator>Iraola, Unai</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>Electrode SOC and SOH estimation with electrode-level ECMs</title><author>Lopetegi, Iker ; Fernandez, Sergio ; Plett, Gregory L ; Trimboli, M Scott ; Iraola, Unai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31198172743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Electric charge</topic><topic>Electrodes</topic><topic>Equivalent circuits</topic><topic>Estimates</topic><topic>Management systems</topic><topic>Parameter estimation</topic><topic>Performance degradation</topic><topic>Power management</topic><topic>State estimation</topic><topic>State of charge</topic><toplevel>online_resources</toplevel><creatorcontrib>Lopetegi, Iker</creatorcontrib><creatorcontrib>Fernandez, Sergio</creatorcontrib><creatorcontrib>Plett, Gregory L</creatorcontrib><creatorcontrib>Trimboli, M Scott</creatorcontrib><creatorcontrib>Iraola, Unai</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopetegi, Iker</au><au>Fernandez, Sergio</au><au>Plett, Gregory L</au><au>Trimboli, M Scott</au><au>Iraola, Unai</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrode SOC and SOH estimation with electrode-level ECMs</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Being able to predict battery internal states that are related to battery degradation is a key aspect to improve battery lifetime and performance, enhancing cleaner electric transportation and energy generation. However, most present battery management systems (BMSs) use equivalent-circuit models (ECMs) for state of charge (SOC) and state of health (SOH) estimation. These models are not able to predict these aging-related variables, and therefore, they cannot be used to limit battery degradation. In this paper, we propose a method for electrode-level SOC (eSOC) and electrode-level SOH (eSOH) estimation using an electrode-level ECM (eECM). The method can produce estimates of the states of lithiation (SOL) of both electrodes and update the eSOH parameters to maintain estimation accuracy through the lifetime of the battery. Furthermore, the eSOH parameter estimates are used to obtain degradation mode information, which could be used to improve state estimation, health diagnosis and prognosis. The method was validated in simulation and experimentally.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119817274 |
source | Publicly Available Content (ProQuest) |
subjects | Batteries Electric charge Electrodes Equivalent circuits Estimates Management systems Parameter estimation Performance degradation Power management State estimation State of charge |
title | Electrode SOC and SOH estimation with electrode-level ECMs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrode%20SOC%20and%20SOH%20estimation%20with%20electrode-level%20ECMs&rft.jtitle=arXiv.org&rft.au=Lopetegi,%20Iker&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3119817274%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31198172743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119817274&rft_id=info:pmid/&rfr_iscdi=true |