Loading…
Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem
In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA) as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy based on market theory. We formulate single-factor models in terms of expectations and PDE...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Trevisani, D López-Salas, J G Vázquez, C García-Rodríguez, J A |
description | In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA) as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy based on market theory. We formulate single-factor models in terms of expectations and PDEs. For PDEs formulation, we rigorously obtain the existence and uniqueness of the solution, as well as some regularity and qualitative properties of the solution. Moreover, appropriate numerical methods are proposed for solving the corresponding PDEs. Finally, some examples show the numerical results for call and put European options and the corresponding XVA that includes the KVA. |
doi_str_mv | 10.48550/arxiv.2410.16825 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3119819878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3119819878</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-9009af7c376e6261ee1a4931921b8859ef9211b7adb7692f41c3df3dd4f0e0c03</originalsourceid><addsrcrecordid>eNotjU1LAzEYhIMgWGp_gLeAFz1szfcmx1LUihUvxYOX8u7mDd2yH3WTLf58AxUGZnhgZgi542yprNbsCcbf5rwUKgNurNBXZCak5IVVQtyQRYxHxpgwpdBazsj3B6QDdpCaGlraDR7bSKH3tJ86HC8Q02HwkYZhpEBrODUp0zO0U24NPQV_nGLqsE_04f1r9UhP41C12N2S6wBtxMW_z8nu5Xm33hTbz9e39WpbgBa2cIw5CGUtS4NGGI7IQTnJneCVtdphyIlXJfiqNE4ExWvpg_ReBYasZnJO7i-z-fZnwpj2x2Ea-_y4l5w7m1Va-Qehd1Pm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3119819878</pqid></control><display><type>article</type><title>Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem</title><source>Publicly Available Content Database</source><creator>Trevisani, D ; López-Salas, J G ; Vázquez, C ; García-Rodríguez, J A</creator><creatorcontrib>Trevisani, D ; López-Salas, J G ; Vázquez, C ; García-Rodríguez, J A</creatorcontrib><description>In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA) as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy based on market theory. We formulate single-factor models in terms of expectations and PDEs. For PDEs formulation, we rigorously obtain the existence and uniqueness of the solution, as well as some regularity and qualitative properties of the solution. Moreover, appropriate numerical methods are proposed for solving the corresponding PDEs. Finally, some examples show the numerical results for call and put European options and the corresponding XVA that includes the KVA.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2410.16825</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Numerical methods ; Partial differential equations</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3119819878?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Trevisani, D</creatorcontrib><creatorcontrib>López-Salas, J G</creatorcontrib><creatorcontrib>Vázquez, C</creatorcontrib><creatorcontrib>García-Rodríguez, J A</creatorcontrib><title>Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem</title><title>arXiv.org</title><description>In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA) as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy based on market theory. We formulate single-factor models in terms of expectations and PDEs. For PDEs formulation, we rigorously obtain the existence and uniqueness of the solution, as well as some regularity and qualitative properties of the solution. Moreover, appropriate numerical methods are proposed for solving the corresponding PDEs. Finally, some examples show the numerical results for call and put European options and the corresponding XVA that includes the KVA.</description><subject>Numerical methods</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEYhIMgWGp_gLeAFz1szfcmx1LUihUvxYOX8u7mDd2yH3WTLf58AxUGZnhgZgi542yprNbsCcbf5rwUKgNurNBXZCak5IVVQtyQRYxHxpgwpdBazsj3B6QDdpCaGlraDR7bSKH3tJ86HC8Q02HwkYZhpEBrODUp0zO0U24NPQV_nGLqsE_04f1r9UhP41C12N2S6wBtxMW_z8nu5Xm33hTbz9e39WpbgBa2cIw5CGUtS4NGGI7IQTnJneCVtdphyIlXJfiqNE4ExWvpg_ReBYasZnJO7i-z-fZnwpj2x2Ea-_y4l5w7m1Va-Qehd1Pm</recordid><startdate>20241022</startdate><enddate>20241022</enddate><creator>Trevisani, D</creator><creator>López-Salas, J G</creator><creator>Vázquez, C</creator><creator>García-Rodríguez, J A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241022</creationdate><title>Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem</title><author>Trevisani, D ; López-Salas, J G ; Vázquez, C ; García-Rodríguez, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-9009af7c376e6261ee1a4931921b8859ef9211b7adb7692f41c3df3dd4f0e0c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Numerical methods</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Trevisani, D</creatorcontrib><creatorcontrib>López-Salas, J G</creatorcontrib><creatorcontrib>Vázquez, C</creatorcontrib><creatorcontrib>García-Rodríguez, J A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trevisani, D</au><au>López-Salas, J G</au><au>Vázquez, C</au><au>García-Rodríguez, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem</atitle><jtitle>arXiv.org</jtitle><date>2024-10-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA) as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy based on market theory. We formulate single-factor models in terms of expectations and PDEs. For PDEs formulation, we rigorously obtain the existence and uniqueness of the solution, as well as some regularity and qualitative properties of the solution. Moreover, appropriate numerical methods are proposed for solving the corresponding PDEs. Finally, some examples show the numerical results for call and put European options and the corresponding XVA that includes the KVA.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2410.16825</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3119819878 |
source | Publicly Available Content Database |
subjects | Numerical methods Partial differential equations |
title | Mathematical models and numerical methods for a capital valuation adjustment (KVA) problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20models%20and%20numerical%20methods%20for%20a%20capital%20valuation%20adjustment%20(KVA)%20problem&rft.jtitle=arXiv.org&rft.au=Trevisani,%20D&rft.date=2024-10-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2410.16825&rft_dat=%3Cproquest%3E3119819878%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-9009af7c376e6261ee1a4931921b8859ef9211b7adb7692f41c3df3dd4f0e0c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3119819878&rft_id=info:pmid/&rfr_iscdi=true |