Loading…

Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field

Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Barrois, Olivier, Aubert, Julien
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barrois, Olivier
Aubert, Julien
description Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.
doi_str_mv 10.48550/arxiv.2410.17914
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3120205970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120205970</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773</originalsourceid><addsrcrecordid>eNo9jstqwzAUREWh0JDmA7oTdFunelrWspi-INBN9uFKlhynsZRKjhv_fQ0tXQ0MM2cGoTtK1qKSkjxCunTjmonZoEpTcYUWjHNaVIKxG7TK-UAIYaViUvIF6us9JLCDS12GoYsBR4_3U5NiD21wQ2fxN4wu41OKJ2jnSGhxHF3CgPPgoJkecIihgEuXp753Q5obBuxnm-I5NPif4jt3bG7RtYdjdqs_XaLty_O2fis2H6_v9dOmAMlIAUYYLkptrVZEa0s1kRxAscYbb72iTntjlKiINcxx2hDBTKVKCq6iWim-RPe_2Pn019nlYXeI5xTmxR2njDAiZzD_AW_eXKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120205970</pqid></control><display><type>article</type><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><source>Publicly Available Content Database</source><creator>Barrois, Olivier ; Aubert, Julien</creator><creatorcontrib>Barrois, Olivier ; Aubert, Julien</creatorcontrib><description>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2410.17914</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coriolis force ; Drift estimation ; Earth core ; Geomagnetic field ; Geomagnetism ; Hydrodynamic equations ; Magnetic fields ; Magnetic signals ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Phase velocity ; Pulse propagation ; Velocity distribution ; Wave dispersion ; Wave fronts ; Wave packets ; Wave propagation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3120205970?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Barrois, Olivier</creatorcontrib><creatorcontrib>Aubert, Julien</creatorcontrib><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><title>arXiv.org</title><description>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</description><subject>Coriolis force</subject><subject>Drift estimation</subject><subject>Earth core</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Hydrodynamic equations</subject><subject>Magnetic fields</subject><subject>Magnetic signals</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Phase velocity</subject><subject>Pulse propagation</subject><subject>Velocity distribution</subject><subject>Wave dispersion</subject><subject>Wave fronts</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jstqwzAUREWh0JDmA7oTdFunelrWspi-INBN9uFKlhynsZRKjhv_fQ0tXQ0MM2cGoTtK1qKSkjxCunTjmonZoEpTcYUWjHNaVIKxG7TK-UAIYaViUvIF6us9JLCDS12GoYsBR4_3U5NiD21wQ2fxN4wu41OKJ2jnSGhxHF3CgPPgoJkecIihgEuXp753Q5obBuxnm-I5NPif4jt3bG7RtYdjdqs_XaLty_O2fis2H6_v9dOmAMlIAUYYLkptrVZEa0s1kRxAscYbb72iTntjlKiINcxx2hDBTKVKCq6iWim-RPe_2Pn019nlYXeI5xTmxR2njDAiZzD_AW_eXKo</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Barrois, Olivier</creator><creator>Aubert, Julien</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241023</creationdate><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><author>Barrois, Olivier ; Aubert, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coriolis force</topic><topic>Drift estimation</topic><topic>Earth core</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Hydrodynamic equations</topic><topic>Magnetic fields</topic><topic>Magnetic signals</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Phase velocity</topic><topic>Pulse propagation</topic><topic>Velocity distribution</topic><topic>Wave dispersion</topic><topic>Wave fronts</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Barrois, Olivier</creatorcontrib><creatorcontrib>Aubert, Julien</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrois, Olivier</au><au>Aubert, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</atitle><jtitle>arXiv.org</jtitle><date>2024-10-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2410.17914</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3120205970
source Publicly Available Content Database
subjects Coriolis force
Drift estimation
Earth core
Geomagnetic field
Geomagnetism
Hydrodynamic equations
Magnetic fields
Magnetic signals
Magnetohydrodynamic waves
Magnetohydrodynamics
Phase velocity
Pulse propagation
Velocity distribution
Wave dispersion
Wave fronts
Wave packets
Wave propagation
title Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20hydromagnetic%20waves%20propagating%20over%20a%20steady,%20non-axisymmetric%20background%20magnetic%20field&rft.jtitle=arXiv.org&rft.au=Barrois,%20Olivier&rft.date=2024-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2410.17914&rft_dat=%3Cproquest%3E3120205970%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120205970&rft_id=info:pmid/&rfr_iscdi=true