Loading…
Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field
Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of t...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barrois, Olivier Aubert, Julien |
description | Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator. |
doi_str_mv | 10.48550/arxiv.2410.17914 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3120205970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120205970</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773</originalsourceid><addsrcrecordid>eNo9jstqwzAUREWh0JDmA7oTdFunelrWspi-INBN9uFKlhynsZRKjhv_fQ0tXQ0MM2cGoTtK1qKSkjxCunTjmonZoEpTcYUWjHNaVIKxG7TK-UAIYaViUvIF6us9JLCDS12GoYsBR4_3U5NiD21wQ2fxN4wu41OKJ2jnSGhxHF3CgPPgoJkecIihgEuXp753Q5obBuxnm-I5NPif4jt3bG7RtYdjdqs_XaLty_O2fis2H6_v9dOmAMlIAUYYLkptrVZEa0s1kRxAscYbb72iTntjlKiINcxx2hDBTKVKCq6iWim-RPe_2Pn019nlYXeI5xTmxR2njDAiZzD_AW_eXKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120205970</pqid></control><display><type>article</type><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><source>Publicly Available Content Database</source><creator>Barrois, Olivier ; Aubert, Julien</creator><creatorcontrib>Barrois, Olivier ; Aubert, Julien</creatorcontrib><description>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2410.17914</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coriolis force ; Drift estimation ; Earth core ; Geomagnetic field ; Geomagnetism ; Hydrodynamic equations ; Magnetic fields ; Magnetic signals ; Magnetohydrodynamic waves ; Magnetohydrodynamics ; Phase velocity ; Pulse propagation ; Velocity distribution ; Wave dispersion ; Wave fronts ; Wave packets ; Wave propagation</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3120205970?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Barrois, Olivier</creatorcontrib><creatorcontrib>Aubert, Julien</creatorcontrib><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><title>arXiv.org</title><description>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</description><subject>Coriolis force</subject><subject>Drift estimation</subject><subject>Earth core</subject><subject>Geomagnetic field</subject><subject>Geomagnetism</subject><subject>Hydrodynamic equations</subject><subject>Magnetic fields</subject><subject>Magnetic signals</subject><subject>Magnetohydrodynamic waves</subject><subject>Magnetohydrodynamics</subject><subject>Phase velocity</subject><subject>Pulse propagation</subject><subject>Velocity distribution</subject><subject>Wave dispersion</subject><subject>Wave fronts</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jstqwzAUREWh0JDmA7oTdFunelrWspi-INBN9uFKlhynsZRKjhv_fQ0tXQ0MM2cGoTtK1qKSkjxCunTjmonZoEpTcYUWjHNaVIKxG7TK-UAIYaViUvIF6us9JLCDS12GoYsBR4_3U5NiD21wQ2fxN4wu41OKJ2jnSGhxHF3CgPPgoJkecIihgEuXp753Q5obBuxnm-I5NPif4jt3bG7RtYdjdqs_XaLty_O2fis2H6_v9dOmAMlIAUYYLkptrVZEa0s1kRxAscYbb72iTntjlKiINcxx2hDBTKVKCq6iWim-RPe_2Pn019nlYXeI5xTmxR2njDAiZzD_AW_eXKo</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Barrois, Olivier</creator><creator>Aubert, Julien</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241023</creationdate><title>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</title><author>Barrois, Olivier ; Aubert, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coriolis force</topic><topic>Drift estimation</topic><topic>Earth core</topic><topic>Geomagnetic field</topic><topic>Geomagnetism</topic><topic>Hydrodynamic equations</topic><topic>Magnetic fields</topic><topic>Magnetic signals</topic><topic>Magnetohydrodynamic waves</topic><topic>Magnetohydrodynamics</topic><topic>Phase velocity</topic><topic>Pulse propagation</topic><topic>Velocity distribution</topic><topic>Wave dispersion</topic><topic>Wave fronts</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Barrois, Olivier</creatorcontrib><creatorcontrib>Aubert, Julien</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barrois, Olivier</au><au>Aubert, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field</atitle><jtitle>arXiv.org</jtitle><date>2024-10-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Motivated by recent observations of rapid (interannual) signals in the geomagnetic data, and by advances in numerical simulations approaching the Earth's outer core conditions, we present a study on the dynamics of hydromagnetic waves evolving over a static base state. Under the assumption of timescales separation between the rapid waves and the slow convection, we linearise the classical magneto-hydrodynamics equations over a steady non-axisymmetric background magnetic field and a zero velocity field. The initial perturbation is a super-rotating pulse of the inner core, which sets the amplitude and length-scales of the waves in the system. The initial pulse triggers axisymmetric, outward propagating torsional Alfvén waves, with characteristic thickness scaling with the magnetic Ekman number as \(Ek_M^{1/4}\). Because the background state is non-axisymmetric, the pulse also triggers non-axisymmetric, quasi-geostrophic Alfvén waves. As these latter waves propagate outwards, they turn into quasi-geostrophic, magneto-Coriolis waves (QG-MC) as the Coriolis force supersedes inertia in the force balance. The period of the initial wave packet is preserved across the shell but the QG-MC wave front disperses and a westward drift is observed after this transformation. Upon reaching the core surface, the westward drift of the QG-MC waves presents an estimated phase speed of about \(1100\,km/y\). This analysis confirms the QG-MC nature of the rapid magnetic signals observed in geomagnetic field models near the equator.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2410.17914</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3120205970 |
source | Publicly Available Content Database |
subjects | Coriolis force Drift estimation Earth core Geomagnetic field Geomagnetism Hydrodynamic equations Magnetic fields Magnetic signals Magnetohydrodynamic waves Magnetohydrodynamics Phase velocity Pulse propagation Velocity distribution Wave dispersion Wave fronts Wave packets Wave propagation |
title | Characterisation of hydromagnetic waves propagating over a steady, non-axisymmetric background magnetic field |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20hydromagnetic%20waves%20propagating%20over%20a%20steady,%20non-axisymmetric%20background%20magnetic%20field&rft.jtitle=arXiv.org&rft.au=Barrois,%20Olivier&rft.date=2024-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2410.17914&rft_dat=%3Cproquest%3E3120205970%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-ab4b3469cc97099c19053aa72dfbfcf71e9fbb7480cb2e31d042b8761ae819773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120205970&rft_id=info:pmid/&rfr_iscdi=true |