Loading…

Polarimetry With Spins in the Solid State

The ability for optically active media to rotate the polarization of light is the basis of polarimetry, an illustrious technique responsible for many breakthroughs in fields as varied as astronomy, medicine and material science. Here, we recast the primary mechanism for spin readout in semiconductor...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Peri, Lorenzo, Felix-Ekkehard von Horstig, Barraud, Sylvain, d, Christopher J B, Benito, Mónica, Gonzalez-Zalba, M Fernando
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Peri, Lorenzo
Felix-Ekkehard von Horstig
Barraud, Sylvain
d, Christopher J B
Benito, Mónica
Gonzalez-Zalba, M Fernando
description The ability for optically active media to rotate the polarization of light is the basis of polarimetry, an illustrious technique responsible for many breakthroughs in fields as varied as astronomy, medicine and material science. Here, we recast the primary mechanism for spin readout in semiconductor-based quantum computers, Pauli spin-blockade (PSB), as the natural extension of polarimetry to the third dimension. We perform polarimetry with spins through a silicon quantum dot exchanging a hole with a boron acceptor, demonstrating the role of spin-orbit coupling in creating spin misalignment. Perfect spin alignment may be recovered by means of rotating the applied magnetic-field orientation. This work shows how spin misalignment sets a fundamental upper limit for the spin readout fidelity in quantum-computing systems based on PSB.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3120206319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120206319</sourcerecordid><originalsourceid>FETCH-proquest_journals_31202063193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDMjPSSzKzE0tKapUCM8syVAILsjMK1bIzFMoyUhVCM7PyUxRCC5JLEnlYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0MjAyMDM2NDS2PiVAEAtHIv-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120206319</pqid></control><display><type>article</type><title>Polarimetry With Spins in the Solid State</title><source>Publicly Available Content Database</source><creator>Peri, Lorenzo ; Felix-Ekkehard von Horstig ; Barraud, Sylvain ; d, Christopher J B ; Benito, Mónica ; Gonzalez-Zalba, M Fernando</creator><creatorcontrib>Peri, Lorenzo ; Felix-Ekkehard von Horstig ; Barraud, Sylvain ; d, Christopher J B ; Benito, Mónica ; Gonzalez-Zalba, M Fernando</creatorcontrib><description>The ability for optically active media to rotate the polarization of light is the basis of polarimetry, an illustrious technique responsible for many breakthroughs in fields as varied as astronomy, medicine and material science. Here, we recast the primary mechanism for spin readout in semiconductor-based quantum computers, Pauli spin-blockade (PSB), as the natural extension of polarimetry to the third dimension. We perform polarimetry with spins through a silicon quantum dot exchanging a hole with a boron acceptor, demonstrating the role of spin-orbit coupling in creating spin misalignment. Perfect spin alignment may be recovered by means of rotating the applied magnetic-field orientation. This work shows how spin misalignment sets a fundamental upper limit for the spin readout fidelity in quantum-computing systems based on PSB.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical polarimetry ; Astronomy ; Misalignment ; Optical activity ; Quantum computers ; Quantum computing ; Quantum dots ; Spin-orbit interactions</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3120206319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Peri, Lorenzo</creatorcontrib><creatorcontrib>Felix-Ekkehard von Horstig</creatorcontrib><creatorcontrib>Barraud, Sylvain</creatorcontrib><creatorcontrib>d, Christopher J B</creatorcontrib><creatorcontrib>Benito, Mónica</creatorcontrib><creatorcontrib>Gonzalez-Zalba, M Fernando</creatorcontrib><title>Polarimetry With Spins in the Solid State</title><title>arXiv.org</title><description>The ability for optically active media to rotate the polarization of light is the basis of polarimetry, an illustrious technique responsible for many breakthroughs in fields as varied as astronomy, medicine and material science. Here, we recast the primary mechanism for spin readout in semiconductor-based quantum computers, Pauli spin-blockade (PSB), as the natural extension of polarimetry to the third dimension. We perform polarimetry with spins through a silicon quantum dot exchanging a hole with a boron acceptor, demonstrating the role of spin-orbit coupling in creating spin misalignment. Perfect spin alignment may be recovered by means of rotating the applied magnetic-field orientation. This work shows how spin misalignment sets a fundamental upper limit for the spin readout fidelity in quantum-computing systems based on PSB.</description><subject>Astronomical polarimetry</subject><subject>Astronomy</subject><subject>Misalignment</subject><subject>Optical activity</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Spin-orbit interactions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDMjPSSzKzE0tKapUCM8syVAILsjMK1bIzFMoyUhVCM7PyUxRCC5JLEnlYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4Y0MjAyMDM2NDS2PiVAEAtHIv-Q</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Peri, Lorenzo</creator><creator>Felix-Ekkehard von Horstig</creator><creator>Barraud, Sylvain</creator><creator>d, Christopher J B</creator><creator>Benito, Mónica</creator><creator>Gonzalez-Zalba, M Fernando</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241023</creationdate><title>Polarimetry With Spins in the Solid State</title><author>Peri, Lorenzo ; Felix-Ekkehard von Horstig ; Barraud, Sylvain ; d, Christopher J B ; Benito, Mónica ; Gonzalez-Zalba, M Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31202063193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomical polarimetry</topic><topic>Astronomy</topic><topic>Misalignment</topic><topic>Optical activity</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Spin-orbit interactions</topic><toplevel>online_resources</toplevel><creatorcontrib>Peri, Lorenzo</creatorcontrib><creatorcontrib>Felix-Ekkehard von Horstig</creatorcontrib><creatorcontrib>Barraud, Sylvain</creatorcontrib><creatorcontrib>d, Christopher J B</creatorcontrib><creatorcontrib>Benito, Mónica</creatorcontrib><creatorcontrib>Gonzalez-Zalba, M Fernando</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peri, Lorenzo</au><au>Felix-Ekkehard von Horstig</au><au>Barraud, Sylvain</au><au>d, Christopher J B</au><au>Benito, Mónica</au><au>Gonzalez-Zalba, M Fernando</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Polarimetry With Spins in the Solid State</atitle><jtitle>arXiv.org</jtitle><date>2024-10-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The ability for optically active media to rotate the polarization of light is the basis of polarimetry, an illustrious technique responsible for many breakthroughs in fields as varied as astronomy, medicine and material science. Here, we recast the primary mechanism for spin readout in semiconductor-based quantum computers, Pauli spin-blockade (PSB), as the natural extension of polarimetry to the third dimension. We perform polarimetry with spins through a silicon quantum dot exchanging a hole with a boron acceptor, demonstrating the role of spin-orbit coupling in creating spin misalignment. Perfect spin alignment may be recovered by means of rotating the applied magnetic-field orientation. This work shows how spin misalignment sets a fundamental upper limit for the spin readout fidelity in quantum-computing systems based on PSB.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3120206319
source Publicly Available Content Database
subjects Astronomical polarimetry
Astronomy
Misalignment
Optical activity
Quantum computers
Quantum computing
Quantum dots
Spin-orbit interactions
title Polarimetry With Spins in the Solid State
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Polarimetry%20With%20Spins%20in%20the%20Solid%20State&rft.jtitle=arXiv.org&rft.au=Peri,%20Lorenzo&rft.date=2024-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3120206319%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31202063193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120206319&rft_id=info:pmid/&rfr_iscdi=true