Loading…

Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture

This work aims to provide a comprehensive understanding of the structural impact of micro-texture on the properties of bearing capacity and friction coefficient through numerical simulation and theoretical calculation. Compared to the traditional optimization method of single-factor analysis (SFA) a...

Full description

Saved in:
Bibliographic Details
Published in:Coatings (Basel) 2024-10, Vol.14 (10), p.1258
Main Authors: Ge, Zhenghui, Hu, Qifan, Zhu, Haitao, Zhu, Yongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c235t-6170d02fef18868496da25e1d5dcdcd5658c4c7fc1ba988dd596ec3dd959fc113
container_end_page
container_issue 10
container_start_page 1258
container_title Coatings (Basel)
container_volume 14
creator Ge, Zhenghui
Hu, Qifan
Zhu, Haitao
Zhu, Yongwei
description This work aims to provide a comprehensive understanding of the structural impact of micro-texture on the properties of bearing capacity and friction coefficient through numerical simulation and theoretical calculation. Compared to the traditional optimization method of single-factor analysis (SFA) and orthogonal experiment, the multivariate linear regression (MLA) algorithm can optimize the structure parameters of the micro-texture within a wider range and analyze the coupling effect of the parameters. Therefore, in this work, micro-textures with varying texture size, area ratio, depth, and geometry were designed, and their impact on the bearing capacity and friction coefficient was investigated using SFA and MLA algorithms. Both methods obtained the optimal structures, and their properties were compared. It was found that the MLA algorithm can further improve the friction coefficient based on the SFA results. The optimal friction coefficient of 0.070409 can be obtained using the SFA method with a size of 500 µm, an area ratio of 40%, a depth of 5 µm, and a geometry of the slit, having a 10.7% reduction compared with the texture-free surface. In comparison, the friction coefficient can be further reduced to 0.067844 by the MLA algorithm under the parameters of size of 600 µm, area ratio of 50%, depth of 9 µm, and geometry of the slit. The final optimal micro-texture surface shows a 15.6% reduction in the friction coefficient compared to the texture-free surfaces and a 4.9% reduction compared to the optimal surfaces obtained by SFA.
doi_str_mv 10.3390/coatings14101258
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120601731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814387510</galeid><sourcerecordid>A814387510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-6170d02fef18868496da25e1d5dcdcd5658c4c7fc1ba988dd596ec3dd959fc113</originalsourceid><addsrcrecordid>eNpdUU1LBDEMHURBUe8eC55Hm-l0pj2K-AW7KLqeh9qma2W2XduOqL_eyiqIySHJI8lLeFV1BPSEMUlPdVDZ-WWCFig0XGxVew3tZd210Gz_yXerw5ReaDEJTIDcq94epmiVRrKI7imMYem0GsldDGuM2WEiF_5ZeY0r9Jk8pkJC5tOY3ZuKTmUkM-dRRXKPy4gpueDJ7Tq7lfssB5UiWPJLMHc6hnqB73mKeFDtWDUmPPyJ-9Xj5cXi_Lqe3V7dnJ_Nat0wnusOempoY9GCEJ1oZWdUwxEMN7o477jQre6thiclhTCGyw41M0ZyWUBg-9XxZu86htcJUx5ewhR9oRwYNLSj0LPvrpNN11KNODhvQ45KFze4cjp4tK7gZwJaJnoOtAzQzUB5KaWIdlhHt1LxYwA6fCsy_FeEfQFojILJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120601731</pqid></control><display><type>article</type><title>Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture</title><source>Publicly Available Content Database</source><creator>Ge, Zhenghui ; Hu, Qifan ; Zhu, Haitao ; Zhu, Yongwei</creator><creatorcontrib>Ge, Zhenghui ; Hu, Qifan ; Zhu, Haitao ; Zhu, Yongwei</creatorcontrib><description>This work aims to provide a comprehensive understanding of the structural impact of micro-texture on the properties of bearing capacity and friction coefficient through numerical simulation and theoretical calculation. Compared to the traditional optimization method of single-factor analysis (SFA) and orthogonal experiment, the multivariate linear regression (MLA) algorithm can optimize the structure parameters of the micro-texture within a wider range and analyze the coupling effect of the parameters. Therefore, in this work, micro-textures with varying texture size, area ratio, depth, and geometry were designed, and their impact on the bearing capacity and friction coefficient was investigated using SFA and MLA algorithms. Both methods obtained the optimal structures, and their properties were compared. It was found that the MLA algorithm can further improve the friction coefficient based on the SFA results. The optimal friction coefficient of 0.070409 can be obtained using the SFA method with a size of 500 µm, an area ratio of 40%, a depth of 5 µm, and a geometry of the slit, having a 10.7% reduction compared with the texture-free surface. In comparison, the friction coefficient can be further reduced to 0.067844 by the MLA algorithm under the parameters of size of 600 µm, area ratio of 50%, depth of 9 µm, and geometry of the slit. The final optimal micro-texture surface shows a 15.6% reduction in the friction coefficient compared to the texture-free surfaces and a 4.9% reduction compared to the optimal surfaces obtained by SFA.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14101258</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bearing capacity ; Boundary conditions ; Coefficient of friction ; Comparative analysis ; Discriminant analysis ; Energy consumption ; Factor analysis ; Free surfaces ; Geometry ; Impact analysis ; Investigations ; Lubricants &amp; lubrication ; Mechanical properties ; Microtexture ; Multivariate analysis ; Numerical analysis ; Optimization ; Parameters ; Pressure distribution ; Regression analysis ; Reynolds number ; Shear stress ; Simulation methods ; Sliding friction ; Surface layers ; Tribology ; Viscosity</subject><ispartof>Coatings (Basel), 2024-10, Vol.14 (10), p.1258</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-6170d02fef18868496da25e1d5dcdcd5658c4c7fc1ba988dd596ec3dd959fc113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120601731/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120601731?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ge, Zhenghui</creatorcontrib><creatorcontrib>Hu, Qifan</creatorcontrib><creatorcontrib>Zhu, Haitao</creatorcontrib><creatorcontrib>Zhu, Yongwei</creatorcontrib><title>Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture</title><title>Coatings (Basel)</title><description>This work aims to provide a comprehensive understanding of the structural impact of micro-texture on the properties of bearing capacity and friction coefficient through numerical simulation and theoretical calculation. Compared to the traditional optimization method of single-factor analysis (SFA) and orthogonal experiment, the multivariate linear regression (MLA) algorithm can optimize the structure parameters of the micro-texture within a wider range and analyze the coupling effect of the parameters. Therefore, in this work, micro-textures with varying texture size, area ratio, depth, and geometry were designed, and their impact on the bearing capacity and friction coefficient was investigated using SFA and MLA algorithms. Both methods obtained the optimal structures, and their properties were compared. It was found that the MLA algorithm can further improve the friction coefficient based on the SFA results. The optimal friction coefficient of 0.070409 can be obtained using the SFA method with a size of 500 µm, an area ratio of 40%, a depth of 5 µm, and a geometry of the slit, having a 10.7% reduction compared with the texture-free surface. In comparison, the friction coefficient can be further reduced to 0.067844 by the MLA algorithm under the parameters of size of 600 µm, area ratio of 50%, depth of 9 µm, and geometry of the slit. The final optimal micro-texture surface shows a 15.6% reduction in the friction coefficient compared to the texture-free surfaces and a 4.9% reduction compared to the optimal surfaces obtained by SFA.</description><subject>Algorithms</subject><subject>Bearing capacity</subject><subject>Boundary conditions</subject><subject>Coefficient of friction</subject><subject>Comparative analysis</subject><subject>Discriminant analysis</subject><subject>Energy consumption</subject><subject>Factor analysis</subject><subject>Free surfaces</subject><subject>Geometry</subject><subject>Impact analysis</subject><subject>Investigations</subject><subject>Lubricants &amp; lubrication</subject><subject>Mechanical properties</subject><subject>Microtexture</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pressure distribution</subject><subject>Regression analysis</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Simulation methods</subject><subject>Sliding friction</subject><subject>Surface layers</subject><subject>Tribology</subject><subject>Viscosity</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUU1LBDEMHURBUe8eC55Hm-l0pj2K-AW7KLqeh9qma2W2XduOqL_eyiqIySHJI8lLeFV1BPSEMUlPdVDZ-WWCFig0XGxVew3tZd210Gz_yXerw5ReaDEJTIDcq94epmiVRrKI7imMYem0GsldDGuM2WEiF_5ZeY0r9Jk8pkJC5tOY3ZuKTmUkM-dRRXKPy4gpueDJ7Tq7lfssB5UiWPJLMHc6hnqB73mKeFDtWDUmPPyJ-9Xj5cXi_Lqe3V7dnJ_Nat0wnusOempoY9GCEJ1oZWdUwxEMN7o477jQre6thiclhTCGyw41M0ZyWUBg-9XxZu86htcJUx5ewhR9oRwYNLSj0LPvrpNN11KNODhvQ45KFze4cjp4tK7gZwJaJnoOtAzQzUB5KaWIdlhHt1LxYwA6fCsy_FeEfQFojILJ</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ge, Zhenghui</creator><creator>Hu, Qifan</creator><creator>Zhu, Haitao</creator><creator>Zhu, Yongwei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241001</creationdate><title>Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture</title><author>Ge, Zhenghui ; Hu, Qifan ; Zhu, Haitao ; Zhu, Yongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-6170d02fef18868496da25e1d5dcdcd5658c4c7fc1ba988dd596ec3dd959fc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bearing capacity</topic><topic>Boundary conditions</topic><topic>Coefficient of friction</topic><topic>Comparative analysis</topic><topic>Discriminant analysis</topic><topic>Energy consumption</topic><topic>Factor analysis</topic><topic>Free surfaces</topic><topic>Geometry</topic><topic>Impact analysis</topic><topic>Investigations</topic><topic>Lubricants &amp; lubrication</topic><topic>Mechanical properties</topic><topic>Microtexture</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pressure distribution</topic><topic>Regression analysis</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Simulation methods</topic><topic>Sliding friction</topic><topic>Surface layers</topic><topic>Tribology</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Zhenghui</creatorcontrib><creatorcontrib>Hu, Qifan</creatorcontrib><creatorcontrib>Zhu, Haitao</creatorcontrib><creatorcontrib>Zhu, Yongwei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Zhenghui</au><au>Hu, Qifan</au><au>Zhu, Haitao</au><au>Zhu, Yongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>10</issue><spage>1258</spage><pages>1258-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>This work aims to provide a comprehensive understanding of the structural impact of micro-texture on the properties of bearing capacity and friction coefficient through numerical simulation and theoretical calculation. Compared to the traditional optimization method of single-factor analysis (SFA) and orthogonal experiment, the multivariate linear regression (MLA) algorithm can optimize the structure parameters of the micro-texture within a wider range and analyze the coupling effect of the parameters. Therefore, in this work, micro-textures with varying texture size, area ratio, depth, and geometry were designed, and their impact on the bearing capacity and friction coefficient was investigated using SFA and MLA algorithms. Both methods obtained the optimal structures, and their properties were compared. It was found that the MLA algorithm can further improve the friction coefficient based on the SFA results. The optimal friction coefficient of 0.070409 can be obtained using the SFA method with a size of 500 µm, an area ratio of 40%, a depth of 5 µm, and a geometry of the slit, having a 10.7% reduction compared with the texture-free surface. In comparison, the friction coefficient can be further reduced to 0.067844 by the MLA algorithm under the parameters of size of 600 µm, area ratio of 50%, depth of 9 µm, and geometry of the slit. The final optimal micro-texture surface shows a 15.6% reduction in the friction coefficient compared to the texture-free surfaces and a 4.9% reduction compared to the optimal surfaces obtained by SFA.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14101258</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2024-10, Vol.14 (10), p.1258
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_3120601731
source Publicly Available Content Database
subjects Algorithms
Bearing capacity
Boundary conditions
Coefficient of friction
Comparative analysis
Discriminant analysis
Energy consumption
Factor analysis
Free surfaces
Geometry
Impact analysis
Investigations
Lubricants & lubrication
Mechanical properties
Microtexture
Multivariate analysis
Numerical analysis
Optimization
Parameters
Pressure distribution
Regression analysis
Reynolds number
Shear stress
Simulation methods
Sliding friction
Surface layers
Tribology
Viscosity
title Surface Tribological Properties Enhancement Using Multivariate Linear Regression Optimization of Surface Micro-Texture
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Tribological%20Properties%20Enhancement%20Using%20Multivariate%20Linear%20Regression%20Optimization%20of%20Surface%20Micro-Texture&rft.jtitle=Coatings%20(Basel)&rft.au=Ge,%20Zhenghui&rft.date=2024-10-01&rft.volume=14&rft.issue=10&rft.spage=1258&rft.pages=1258-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14101258&rft_dat=%3Cgale_proqu%3EA814387510%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c235t-6170d02fef18868496da25e1d5dcdcd5658c4c7fc1ba988dd596ec3dd959fc113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120601731&rft_id=info:pmid/&rft_galeid=A814387510&rfr_iscdi=true