Loading…

Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties

This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the elli...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8096-8103
Main Authors: Ma, Xuehui, Zhang, Shiliang, Li, Yushuai, Qian, Fucai, Sun, Zhiyong, Huang, Tingwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3
container_end_page 8103
container_issue 11
container_start_page 8096
container_title IEEE transactions on automatic control
container_volume 69
creator Ma, Xuehui
Zhang, Shiliang
Li, Yushuai
Qian, Fucai
Sun, Zhiyong
Huang, Tingwen
description This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.
doi_str_mv 10.1109/TAC.2024.3410912
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120655654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10551447</ieee_id><sourcerecordid>3120655654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouK7ePXgIeO6azzY9rmX9gIKgFY8lbaeatdvUpBX2vzdrPXiaeczvzTAPoUtKVpSS9KZYZytGmFhxESRlR2hBpVQRk4wfowUhVEUpU_EpOvN-G2QsBF0gu270MJpvwM-2mvyIC6frT9O_48z2o7MdfjPjB17Xv0wO2vWHYWsdzk0fJH7Z-xF2fuY2XWcGb02jO3xrp76BBr_2NbhRm3404M_RSas7Dxd_dYmKu02RPUT50_1jts6jOiUiqoDFshFVAikXLGmViimvtAoPhk5WKWFMqrROFU8UFbyJCWioNJEtqRQHvkTX89rB2a8J_Fhu7eT6cLHklJFYyliKQJGZqp313kFbDs7stNuXlJSHVMuQanlItfxLNViuZosBgH-4lFSIhP8APUlzAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655654</pqid></control><display><type>article</type><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</creator><creatorcontrib>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</creatorcontrib><description>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3410912</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Control systems ; ellipsoidal set ; Ellipsoids ; Estimation ; Learning ; Linear systems ; Parameter robustness ; Parameter uncertainty ; Robust control ; Tracking control ; Transient performance ; Uncertain systems ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8096-8103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</cites><orcidid>0000-0002-4700-1479 ; 0000-0002-9524-1602 ; 0000-0001-8461-1420 ; 0000-0001-9610-846X ; 0000-0001-9002-6578 ; 0000-0002-3043-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10551447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ma, Xuehui</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Li, Yushuai</creatorcontrib><creatorcontrib>Qian, Fucai</creatorcontrib><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Control systems</subject><subject>ellipsoidal set</subject><subject>Ellipsoids</subject><subject>Estimation</subject><subject>Learning</subject><subject>Linear systems</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Robust control</subject><subject>Tracking control</subject><subject>Transient performance</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LxDAQxYMouK7ePXgIeO6azzY9rmX9gIKgFY8lbaeatdvUpBX2vzdrPXiaeczvzTAPoUtKVpSS9KZYZytGmFhxESRlR2hBpVQRk4wfowUhVEUpU_EpOvN-G2QsBF0gu270MJpvwM-2mvyIC6frT9O_48z2o7MdfjPjB17Xv0wO2vWHYWsdzk0fJH7Z-xF2fuY2XWcGb02jO3xrp76BBr_2NbhRm3404M_RSas7Dxd_dYmKu02RPUT50_1jts6jOiUiqoDFshFVAikXLGmViimvtAoPhk5WKWFMqrROFU8UFbyJCWioNJEtqRQHvkTX89rB2a8J_Fhu7eT6cLHklJFYyliKQJGZqp313kFbDs7stNuXlJSHVMuQanlItfxLNViuZosBgH-4lFSIhP8APUlzAA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ma, Xuehui</creator><creator>Zhang, Shiliang</creator><creator>Li, Yushuai</creator><creator>Qian, Fucai</creator><creator>Sun, Zhiyong</creator><creator>Huang, Tingwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4700-1479</orcidid><orcidid>https://orcid.org/0000-0002-9524-1602</orcidid><orcidid>https://orcid.org/0000-0001-8461-1420</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-9002-6578</orcidid><orcidid>https://orcid.org/0000-0002-3043-3777</orcidid></search><sort><creationdate>202411</creationdate><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><author>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Control systems</topic><topic>ellipsoidal set</topic><topic>Ellipsoids</topic><topic>Estimation</topic><topic>Learning</topic><topic>Linear systems</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Robust control</topic><topic>Tracking control</topic><topic>Transient performance</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xuehui</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Li, Yushuai</creatorcontrib><creatorcontrib>Qian, Fucai</creatorcontrib><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xuehui</au><au>Zhang, Shiliang</au><au>Li, Yushuai</au><au>Qian, Fucai</au><au>Sun, Zhiyong</au><au>Huang, Tingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8096</spage><epage>8103</epage><pages>8096-8103</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3410912</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4700-1479</orcidid><orcidid>https://orcid.org/0000-0002-9524-1602</orcidid><orcidid>https://orcid.org/0000-0001-8461-1420</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-9002-6578</orcidid><orcidid>https://orcid.org/0000-0002-3043-3777</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8096-8103
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_3120655654
source IEEE Electronic Library (IEL) Journals
subjects Adaptive control
Adaptive systems
Control systems
ellipsoidal set
Ellipsoids
Estimation
Learning
Linear systems
Parameter robustness
Parameter uncertainty
Robust control
Tracking control
Transient performance
Uncertain systems
Uncertainty
Vectors
title Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Robust%20Tracking%20Control%20With%20Active%20Learning%20for%20Linear%20Systems%20With%20Ellipsoidal%20Bounded%20Uncertainties&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ma,%20Xuehui&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=8096&rft.epage=8103&rft.pages=8096-8103&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3410912&rft_dat=%3Cproquest_cross%3E3120655654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120655654&rft_id=info:pmid/&rft_ieee_id=10551447&rfr_iscdi=true