Loading…
Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties
This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the elli...
Saved in:
Published in: | IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8096-8103 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3 |
container_end_page | 8103 |
container_issue | 11 |
container_start_page | 8096 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Ma, Xuehui Zhang, Shiliang Li, Yushuai Qian, Fucai Sun, Zhiyong Huang, Tingwen |
description | This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method. |
doi_str_mv | 10.1109/TAC.2024.3410912 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120655654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10551447</ieee_id><sourcerecordid>3120655654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouK7ePXgIeO6azzY9rmX9gIKgFY8lbaeatdvUpBX2vzdrPXiaeczvzTAPoUtKVpSS9KZYZytGmFhxESRlR2hBpVQRk4wfowUhVEUpU_EpOvN-G2QsBF0gu270MJpvwM-2mvyIC6frT9O_48z2o7MdfjPjB17Xv0wO2vWHYWsdzk0fJH7Z-xF2fuY2XWcGb02jO3xrp76BBr_2NbhRm3404M_RSas7Dxd_dYmKu02RPUT50_1jts6jOiUiqoDFshFVAikXLGmViimvtAoPhk5WKWFMqrROFU8UFbyJCWioNJEtqRQHvkTX89rB2a8J_Fhu7eT6cLHklJFYyliKQJGZqp313kFbDs7stNuXlJSHVMuQanlItfxLNViuZosBgH-4lFSIhP8APUlzAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655654</pqid></control><display><type>article</type><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</creator><creatorcontrib>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</creatorcontrib><description>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3410912</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Adaptive systems ; Control systems ; ellipsoidal set ; Ellipsoids ; Estimation ; Learning ; Linear systems ; Parameter robustness ; Parameter uncertainty ; Robust control ; Tracking control ; Transient performance ; Uncertain systems ; Uncertainty ; Vectors</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8096-8103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</cites><orcidid>0000-0002-4700-1479 ; 0000-0002-9524-1602 ; 0000-0001-8461-1420 ; 0000-0001-9610-846X ; 0000-0001-9002-6578 ; 0000-0002-3043-3777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10551447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ma, Xuehui</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Li, Yushuai</creatorcontrib><creatorcontrib>Qian, Fucai</creatorcontrib><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Control systems</subject><subject>ellipsoidal set</subject><subject>Ellipsoids</subject><subject>Estimation</subject><subject>Learning</subject><subject>Linear systems</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Robust control</subject><subject>Tracking control</subject><subject>Transient performance</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1LxDAQxYMouK7ePXgIeO6azzY9rmX9gIKgFY8lbaeatdvUpBX2vzdrPXiaeczvzTAPoUtKVpSS9KZYZytGmFhxESRlR2hBpVQRk4wfowUhVEUpU_EpOvN-G2QsBF0gu270MJpvwM-2mvyIC6frT9O_48z2o7MdfjPjB17Xv0wO2vWHYWsdzk0fJH7Z-xF2fuY2XWcGb02jO3xrp76BBr_2NbhRm3404M_RSas7Dxd_dYmKu02RPUT50_1jts6jOiUiqoDFshFVAikXLGmViimvtAoPhk5WKWFMqrROFU8UFbyJCWioNJEtqRQHvkTX89rB2a8J_Fhu7eT6cLHklJFYyliKQJGZqp313kFbDs7stNuXlJSHVMuQanlItfxLNViuZosBgH-4lFSIhP8APUlzAA</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Ma, Xuehui</creator><creator>Zhang, Shiliang</creator><creator>Li, Yushuai</creator><creator>Qian, Fucai</creator><creator>Sun, Zhiyong</creator><creator>Huang, Tingwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4700-1479</orcidid><orcidid>https://orcid.org/0000-0002-9524-1602</orcidid><orcidid>https://orcid.org/0000-0001-8461-1420</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-9002-6578</orcidid><orcidid>https://orcid.org/0000-0002-3043-3777</orcidid></search><sort><creationdate>202411</creationdate><title>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</title><author>Ma, Xuehui ; Zhang, Shiliang ; Li, Yushuai ; Qian, Fucai ; Sun, Zhiyong ; Huang, Tingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Control systems</topic><topic>ellipsoidal set</topic><topic>Ellipsoids</topic><topic>Estimation</topic><topic>Learning</topic><topic>Linear systems</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Robust control</topic><topic>Tracking control</topic><topic>Transient performance</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xuehui</creatorcontrib><creatorcontrib>Zhang, Shiliang</creatorcontrib><creatorcontrib>Li, Yushuai</creatorcontrib><creatorcontrib>Qian, Fucai</creatorcontrib><creatorcontrib>Sun, Zhiyong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xuehui</au><au>Zhang, Shiliang</au><au>Li, Yushuai</au><au>Qian, Fucai</au><au>Sun, Zhiyong</au><au>Huang, Tingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8096</spage><epage>8103</epage><pages>8096-8103</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This article is concerned with the robust tracking control of linear uncertain systems, whose unknown system parameters and disturbances are bounded within ellipsoidal sets. We propose an adaptive robust control that can actively learn the ellipsoid sets. Particularly, our approach utilizes the ellipsoidal set-membership estimation in learning the ellipsoid sets, aiming at narrowing the uncertainty boundaries to reduce the conservativeness in robust control. To further improve the transient performance during the uncertainty learning, we enrich the information fed to the learning by maximizing the volume of the ellipsoid set. The maximized set volume stimulates the system to actively learn the uncertainties and leads to accelerated uncertainty reduction. We conduct numerical simulations to demonstrate the improvement of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3410912</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4700-1479</orcidid><orcidid>https://orcid.org/0000-0002-9524-1602</orcidid><orcidid>https://orcid.org/0000-0001-8461-1420</orcidid><orcidid>https://orcid.org/0000-0001-9610-846X</orcidid><orcidid>https://orcid.org/0000-0001-9002-6578</orcidid><orcidid>https://orcid.org/0000-0002-3043-3777</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8096-8103 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3120655654 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive control Adaptive systems Control systems ellipsoidal set Ellipsoids Estimation Learning Linear systems Parameter robustness Parameter uncertainty Robust control Tracking control Transient performance Uncertain systems Uncertainty Vectors |
title | Adaptive Robust Tracking Control With Active Learning for Linear Systems With Ellipsoidal Bounded Uncertainties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Robust%20Tracking%20Control%20With%20Active%20Learning%20for%20Linear%20Systems%20With%20Ellipsoidal%20Bounded%20Uncertainties&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ma,%20Xuehui&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=8096&rft.epage=8103&rft.pages=8096-8103&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3410912&rft_dat=%3Cproquest_cross%3E3120655654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c904-be265d4b7e93427f88613ba82028615b9022589c98378143d60eaeba05f0b83e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120655654&rft_id=info:pmid/&rft_ieee_id=10551447&rfr_iscdi=true |