Loading…
Performance Bounds for Quantum Feedback Control
The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonical...
Saved in:
Published in: | IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8057-8063 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033 |
container_end_page | 8063 |
container_issue | 11 |
container_start_page | 8057 |
container_title | IEEE transactions on automatic control |
container_volume | 69 |
creator | Holtorf, Flemming Schafer, Frank Arnold, Julian Rackauckas, Christopher V. Edelman, Alan |
description | The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements. |
doi_str_mv | 10.1109/TAC.2024.3416008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120655745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10561495</ieee_id><sourcerecordid>3120655745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMouFbvHjwseN528rnJsS5WhYIKvYckm0Bru6lJ9-C_N6U99DS8zPPOwIPQI4YpxqBmq3k3JUDYlDIsAOQVqjDnsiGc0GtUAWDZKCLFLbrLeVOiYAxXaPblU4hpZwbn65c4Dn2uS66_RzMcxl298L63xv3UXRwOKW7v0U0w2-wfznOCVovXVffeLD_fPrr5snEKeEOcZAyEDUQ601KsuOqtE45hhR3riSUtZdQqFiw4zwMzToZeeCvLmgClE_R8OrtP8Xf0-aA3cUxD-agpJiA4bxkvFJwol2LOyQe9T-udSX8agz5a0cWKPlrRZyul8nSqrL33FzgXmClO_wGnQ1wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655745</pqid></control><display><type>article</type><title>Performance Bounds for Quantum Feedback Control</title><source>IEEE Xplore (Online service)</source><creator>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</creator><creatorcontrib>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</creatorcontrib><description>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3416008</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Convex optimization ; Convexity ; Feedback control ; Optimal control ; Optimization ; Photonics ; Polynomials ; quantum filtering ; quantum information and control ; Quantum phenomena ; Quantum state ; Quantum system ; Qubits (quantum computing) ; stochastic optimal control ; Target detection ; Technological innovation</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8057-8063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</cites><orcidid>0000-0002-3704-0191 ; 0000-0002-5338-7048 ; 0000-0001-7676-3133 ; 0000-0003-2684-4984 ; 0000-0001-5850-0663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10561495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Holtorf, Flemming</creatorcontrib><creatorcontrib>Schafer, Frank</creatorcontrib><creatorcontrib>Arnold, Julian</creatorcontrib><creatorcontrib>Rackauckas, Christopher V.</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><title>Performance Bounds for Quantum Feedback Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</description><subject>Control systems</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Feedback control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Polynomials</subject><subject>quantum filtering</subject><subject>quantum information and control</subject><subject>Quantum phenomena</subject><subject>Quantum state</subject><subject>Quantum system</subject><subject>Qubits (quantum computing)</subject><subject>stochastic optimal control</subject><subject>Target detection</subject><subject>Technological innovation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMouFbvHjwseN528rnJsS5WhYIKvYckm0Bru6lJ9-C_N6U99DS8zPPOwIPQI4YpxqBmq3k3JUDYlDIsAOQVqjDnsiGc0GtUAWDZKCLFLbrLeVOiYAxXaPblU4hpZwbn65c4Dn2uS66_RzMcxl298L63xv3UXRwOKW7v0U0w2-wfznOCVovXVffeLD_fPrr5snEKeEOcZAyEDUQ601KsuOqtE45hhR3riSUtZdQqFiw4zwMzToZeeCvLmgClE_R8OrtP8Xf0-aA3cUxD-agpJiA4bxkvFJwol2LOyQe9T-udSX8agz5a0cWKPlrRZyul8nSqrL33FzgXmClO_wGnQ1wd</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Holtorf, Flemming</creator><creator>Schafer, Frank</creator><creator>Arnold, Julian</creator><creator>Rackauckas, Christopher V.</creator><creator>Edelman, Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3704-0191</orcidid><orcidid>https://orcid.org/0000-0002-5338-7048</orcidid><orcidid>https://orcid.org/0000-0001-7676-3133</orcidid><orcidid>https://orcid.org/0000-0003-2684-4984</orcidid><orcidid>https://orcid.org/0000-0001-5850-0663</orcidid></search><sort><creationdate>202411</creationdate><title>Performance Bounds for Quantum Feedback Control</title><author>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Feedback control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Polynomials</topic><topic>quantum filtering</topic><topic>quantum information and control</topic><topic>Quantum phenomena</topic><topic>Quantum state</topic><topic>Quantum system</topic><topic>Qubits (quantum computing)</topic><topic>stochastic optimal control</topic><topic>Target detection</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtorf, Flemming</creatorcontrib><creatorcontrib>Schafer, Frank</creatorcontrib><creatorcontrib>Arnold, Julian</creatorcontrib><creatorcontrib>Rackauckas, Christopher V.</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtorf, Flemming</au><au>Schafer, Frank</au><au>Arnold, Julian</au><au>Rackauckas, Christopher V.</au><au>Edelman, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds for Quantum Feedback Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8057</spage><epage>8063</epage><pages>8057-8063</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3416008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3704-0191</orcidid><orcidid>https://orcid.org/0000-0002-5338-7048</orcidid><orcidid>https://orcid.org/0000-0001-7676-3133</orcidid><orcidid>https://orcid.org/0000-0003-2684-4984</orcidid><orcidid>https://orcid.org/0000-0001-5850-0663</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8057-8063 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_journals_3120655745 |
source | IEEE Xplore (Online service) |
subjects | Control systems Convex optimization Convexity Feedback control Optimal control Optimization Photonics Polynomials quantum filtering quantum information and control Quantum phenomena Quantum state Quantum system Qubits (quantum computing) stochastic optimal control Target detection Technological innovation |
title | Performance Bounds for Quantum Feedback Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20for%20Quantum%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Holtorf,%20Flemming&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=8057&rft.epage=8063&rft.pages=8057-8063&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3416008&rft_dat=%3Cproquest_cross%3E3120655745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120655745&rft_id=info:pmid/&rft_ieee_id=10561495&rfr_iscdi=true |