Loading…

Performance Bounds for Quantum Feedback Control

The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonical...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2024-11, Vol.69 (11), p.8057-8063
Main Authors: Holtorf, Flemming, Schafer, Frank, Arnold, Julian, Rackauckas, Christopher V., Edelman, Alan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033
container_end_page 8063
container_issue 11
container_start_page 8057
container_title IEEE transactions on automatic control
container_volume 69
creator Holtorf, Flemming
Schafer, Frank
Arnold, Julian
Rackauckas, Christopher V.
Edelman, Alan
description The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.
doi_str_mv 10.1109/TAC.2024.3416008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3120655745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10561495</ieee_id><sourcerecordid>3120655745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMouFbvHjwseN528rnJsS5WhYIKvYckm0Bru6lJ9-C_N6U99DS8zPPOwIPQI4YpxqBmq3k3JUDYlDIsAOQVqjDnsiGc0GtUAWDZKCLFLbrLeVOiYAxXaPblU4hpZwbn65c4Dn2uS66_RzMcxl298L63xv3UXRwOKW7v0U0w2-wfznOCVovXVffeLD_fPrr5snEKeEOcZAyEDUQ601KsuOqtE45hhR3riSUtZdQqFiw4zwMzToZeeCvLmgClE_R8OrtP8Xf0-aA3cUxD-agpJiA4bxkvFJwol2LOyQe9T-udSX8agz5a0cWKPlrRZyul8nSqrL33FzgXmClO_wGnQ1wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655745</pqid></control><display><type>article</type><title>Performance Bounds for Quantum Feedback Control</title><source>IEEE Xplore (Online service)</source><creator>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</creator><creatorcontrib>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</creatorcontrib><description>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2024.3416008</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Convex optimization ; Convexity ; Feedback control ; Optimal control ; Optimization ; Photonics ; Polynomials ; quantum filtering ; quantum information and control ; Quantum phenomena ; Quantum state ; Quantum system ; Qubits (quantum computing) ; stochastic optimal control ; Target detection ; Technological innovation</subject><ispartof>IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8057-8063</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</cites><orcidid>0000-0002-3704-0191 ; 0000-0002-5338-7048 ; 0000-0001-7676-3133 ; 0000-0003-2684-4984 ; 0000-0001-5850-0663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10561495$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Holtorf, Flemming</creatorcontrib><creatorcontrib>Schafer, Frank</creatorcontrib><creatorcontrib>Arnold, Julian</creatorcontrib><creatorcontrib>Rackauckas, Christopher V.</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><title>Performance Bounds for Quantum Feedback Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</description><subject>Control systems</subject><subject>Convex optimization</subject><subject>Convexity</subject><subject>Feedback control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Photonics</subject><subject>Polynomials</subject><subject>quantum filtering</subject><subject>quantum information and control</subject><subject>Quantum phenomena</subject><subject>Quantum state</subject><subject>Quantum system</subject><subject>Qubits (quantum computing)</subject><subject>stochastic optimal control</subject><subject>Target detection</subject><subject>Technological innovation</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMouFbvHjwseN528rnJsS5WhYIKvYckm0Bru6lJ9-C_N6U99DS8zPPOwIPQI4YpxqBmq3k3JUDYlDIsAOQVqjDnsiGc0GtUAWDZKCLFLbrLeVOiYAxXaPblU4hpZwbn65c4Dn2uS66_RzMcxl298L63xv3UXRwOKW7v0U0w2-wfznOCVovXVffeLD_fPrr5snEKeEOcZAyEDUQ601KsuOqtE45hhR3riSUtZdQqFiw4zwMzToZeeCvLmgClE_R8OrtP8Xf0-aA3cUxD-agpJiA4bxkvFJwol2LOyQe9T-udSX8agz5a0cWKPlrRZyul8nSqrL33FzgXmClO_wGnQ1wd</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Holtorf, Flemming</creator><creator>Schafer, Frank</creator><creator>Arnold, Julian</creator><creator>Rackauckas, Christopher V.</creator><creator>Edelman, Alan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3704-0191</orcidid><orcidid>https://orcid.org/0000-0002-5338-7048</orcidid><orcidid>https://orcid.org/0000-0001-7676-3133</orcidid><orcidid>https://orcid.org/0000-0003-2684-4984</orcidid><orcidid>https://orcid.org/0000-0001-5850-0663</orcidid></search><sort><creationdate>202411</creationdate><title>Performance Bounds for Quantum Feedback Control</title><author>Holtorf, Flemming ; Schafer, Frank ; Arnold, Julian ; Rackauckas, Christopher V. ; Edelman, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Convex optimization</topic><topic>Convexity</topic><topic>Feedback control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Photonics</topic><topic>Polynomials</topic><topic>quantum filtering</topic><topic>quantum information and control</topic><topic>Quantum phenomena</topic><topic>Quantum state</topic><topic>Quantum system</topic><topic>Qubits (quantum computing)</topic><topic>stochastic optimal control</topic><topic>Target detection</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtorf, Flemming</creatorcontrib><creatorcontrib>Schafer, Frank</creatorcontrib><creatorcontrib>Arnold, Julian</creatorcontrib><creatorcontrib>Rackauckas, Christopher V.</creatorcontrib><creatorcontrib>Edelman, Alan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtorf, Flemming</au><au>Schafer, Frank</au><au>Arnold, Julian</au><au>Rackauckas, Christopher V.</au><au>Edelman, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Bounds for Quantum Feedback Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-11</date><risdate>2024</risdate><volume>69</volume><issue>11</issue><spage>8057</spage><epage>8063</epage><pages>8057-8063</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The limits of quantum feedback control have immediate consequences for quantum information science at large, yet remain largely unexplored. Here, we combine quantum filtering theory and moment-sum-of-squares techniques to construct a hierarchy of convex optimization problems that furnish monotonically improving, computable bounds on the best attainable performance for a broad class of quantum feedback control problems. These bounds may serve as witnesses of fundamental limitations, optimality certificates, or performance targets. We prove convergence of the bounds to the optimal control performance under technical conditions and demonstrate the practical utility of our approach by designing certifiably near-optimal controllers for a qubit in a cavity subjected to photon counting and homodyne detection measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2024.3416008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3704-0191</orcidid><orcidid>https://orcid.org/0000-0002-5338-7048</orcidid><orcidid>https://orcid.org/0000-0001-7676-3133</orcidid><orcidid>https://orcid.org/0000-0003-2684-4984</orcidid><orcidid>https://orcid.org/0000-0001-5850-0663</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-11, Vol.69 (11), p.8057-8063
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_journals_3120655745
source IEEE Xplore (Online service)
subjects Control systems
Convex optimization
Convexity
Feedback control
Optimal control
Optimization
Photonics
Polynomials
quantum filtering
quantum information and control
Quantum phenomena
Quantum state
Quantum system
Qubits (quantum computing)
stochastic optimal control
Target detection
Technological innovation
title Performance Bounds for Quantum Feedback Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A08%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Bounds%20for%20Quantum%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Holtorf,%20Flemming&rft.date=2024-11&rft.volume=69&rft.issue=11&rft.spage=8057&rft.epage=8063&rft.pages=8057-8063&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2024.3416008&rft_dat=%3Cproquest_cross%3E3120655745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c905-2c84406bf28ca731959dbc6c4191c4d2b27343b94fb0ce5f4ac8fd6eb81c42033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120655745&rft_id=info:pmid/&rft_ieee_id=10561495&rfr_iscdi=true