Loading…
Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management
The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate ch...
Saved in:
Published in: | Sustainability 2024-10, Vol.16 (20), p.8805 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703 |
container_end_page | |
container_issue | 20 |
container_start_page | 8805 |
container_title | Sustainability |
container_volume | 16 |
creator | Heo, Joonghyeok Lee, Jeongho Hyun, Yunjung Park, Joonkyu |
description | The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change. |
doi_str_mv | 10.3390/su16208805 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120806007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814419662</galeid><sourcerecordid>A814419662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</originalsourceid><addsrcrecordid>eNpVkdFK5DAUhous4KDe-AQBr1YcPWmbTnMpw6oDI7voLl6WM8lJt0ObjEkq-hC-sxlGUJOL_Pn5_pxwTpadcLgoCgmXYeRVDnUNYi-b5DDjUw4CfnzRB9lxCGtIqyi45NUke1vYSK3H2NmW3aH631liS0Jvk3HOlmg1m7tn8udsK29ftXe9azuFPbtzmvptLrrE2Oi71RiJ_UGPA0XygRnn2bzvBkz2YtigioE5yx7T3bN7Cm70ilJZiy0NZONRtm-wD3T8cR5m_65__Z3fTpe_bxbzq-VU5WIWp7kBXUsolKh1BVpwFFyXSaNQ0sg6l0qVpVA1GJSGVrnUqxXWJLjRuZ5BcZid7t7dePc0UojNOn3FppJNwVMLoQKYJepiR7XYU9NZ46JHlbamoVPOkumSf1XzsuSyqvIU-PktkJhIL7HFMYRm8XD_nT3bscq7EDyZZuNTo_xrw6HZjrP5HGfxDowHknE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120806007</pqid></control><display><type>article</type><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><source>Publicly Available Content (ProQuest)</source><creator>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</creator><creatorcontrib>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</creatorcontrib><description>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16208805</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquatic resources ; Climate change ; Climatic changes ; Geospatial data ; Groundwater ; Groundwater recharge ; Hydrology ; Land use ; Machine learning ; Management ; Neural networks ; Pollutants ; Pollution ; South Korea ; Spatial data ; Surface water ; United Kingdom ; Urban areas ; Water ; Water quality ; Water resources management ; Water supply ; Water temperature ; Web portals</subject><ispartof>Sustainability, 2024-10, Vol.16 (20), p.8805</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</cites><orcidid>0000-0002-6541-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120806007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120806007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Heo, Joonghyeok</creatorcontrib><creatorcontrib>Lee, Jeongho</creatorcontrib><creatorcontrib>Hyun, Yunjung</creatorcontrib><creatorcontrib>Park, Joonkyu</creatorcontrib><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><title>Sustainability</title><description>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</description><subject>Aquatic resources</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Geospatial data</subject><subject>Groundwater</subject><subject>Groundwater recharge</subject><subject>Hydrology</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Management</subject><subject>Neural networks</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>South Korea</subject><subject>Spatial data</subject><subject>Surface water</subject><subject>United Kingdom</subject><subject>Urban areas</subject><subject>Water</subject><subject>Water quality</subject><subject>Water resources management</subject><subject>Water supply</subject><subject>Water temperature</subject><subject>Web portals</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkdFK5DAUhous4KDe-AQBr1YcPWmbTnMpw6oDI7voLl6WM8lJt0ObjEkq-hC-sxlGUJOL_Pn5_pxwTpadcLgoCgmXYeRVDnUNYi-b5DDjUw4CfnzRB9lxCGtIqyi45NUke1vYSK3H2NmW3aH631liS0Jvk3HOlmg1m7tn8udsK29ftXe9azuFPbtzmvptLrrE2Oi71RiJ_UGPA0XygRnn2bzvBkz2YtigioE5yx7T3bN7Cm70ilJZiy0NZONRtm-wD3T8cR5m_65__Z3fTpe_bxbzq-VU5WIWp7kBXUsolKh1BVpwFFyXSaNQ0sg6l0qVpVA1GJSGVrnUqxXWJLjRuZ5BcZid7t7dePc0UojNOn3FppJNwVMLoQKYJepiR7XYU9NZ46JHlbamoVPOkumSf1XzsuSyqvIU-PktkJhIL7HFMYRm8XD_nT3bscq7EDyZZuNTo_xrw6HZjrP5HGfxDowHknE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Heo, Joonghyeok</creator><creator>Lee, Jeongho</creator><creator>Hyun, Yunjung</creator><creator>Park, Joonkyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6541-8489</orcidid></search><sort><creationdate>20241001</creationdate><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><author>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic resources</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Geospatial data</topic><topic>Groundwater</topic><topic>Groundwater recharge</topic><topic>Hydrology</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Management</topic><topic>Neural networks</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>South Korea</topic><topic>Spatial data</topic><topic>Surface water</topic><topic>United Kingdom</topic><topic>Urban areas</topic><topic>Water</topic><topic>Water quality</topic><topic>Water resources management</topic><topic>Water supply</topic><topic>Water temperature</topic><topic>Web portals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Joonghyeok</creatorcontrib><creatorcontrib>Lee, Jeongho</creatorcontrib><creatorcontrib>Hyun, Yunjung</creatorcontrib><creatorcontrib>Park, Joonkyu</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Joonghyeok</au><au>Lee, Jeongho</au><au>Hyun, Yunjung</au><au>Park, Joonkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</atitle><jtitle>Sustainability</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>8805</spage><pages>8805-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16208805</doi><orcidid>https://orcid.org/0000-0002-6541-8489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-10, Vol.16 (20), p.8805 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3120806007 |
source | Publicly Available Content (ProQuest) |
subjects | Aquatic resources Climate change Climatic changes Geospatial data Groundwater Groundwater recharge Hydrology Land use Machine learning Management Neural networks Pollutants Pollution South Korea Spatial data Surface water United Kingdom Urban areas Water Water quality Water resources management Water supply Water temperature Web portals |
title | Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Machine%20Learning,%20Land%20Cover,%20and%20Hydrological%20Modeling%20to%20Contribute%20Parameters%20for%20Climate%20Impacts%20on%20Water%20Resource%20Management&rft.jtitle=Sustainability&rft.au=Heo,%20Joonghyeok&rft.date=2024-10-01&rft.volume=16&rft.issue=20&rft.spage=8805&rft.pages=8805-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16208805&rft_dat=%3Cgale_proqu%3EA814419662%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120806007&rft_id=info:pmid/&rft_galeid=A814419662&rfr_iscdi=true |