Loading…

Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management

The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate ch...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-10, Vol.16 (20), p.8805
Main Authors: Heo, Joonghyeok, Lee, Jeongho, Hyun, Yunjung, Park, Joonkyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703
container_end_page
container_issue 20
container_start_page 8805
container_title Sustainability
container_volume 16
creator Heo, Joonghyeok
Lee, Jeongho
Hyun, Yunjung
Park, Joonkyu
description The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.
doi_str_mv 10.3390/su16208805
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3120806007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814419662</galeid><sourcerecordid>A814419662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</originalsourceid><addsrcrecordid>eNpVkdFK5DAUhous4KDe-AQBr1YcPWmbTnMpw6oDI7voLl6WM8lJt0ObjEkq-hC-sxlGUJOL_Pn5_pxwTpadcLgoCgmXYeRVDnUNYi-b5DDjUw4CfnzRB9lxCGtIqyi45NUke1vYSK3H2NmW3aH631liS0Jvk3HOlmg1m7tn8udsK29ftXe9azuFPbtzmvptLrrE2Oi71RiJ_UGPA0XygRnn2bzvBkz2YtigioE5yx7T3bN7Cm70ilJZiy0NZONRtm-wD3T8cR5m_65__Z3fTpe_bxbzq-VU5WIWp7kBXUsolKh1BVpwFFyXSaNQ0sg6l0qVpVA1GJSGVrnUqxXWJLjRuZ5BcZid7t7dePc0UojNOn3FppJNwVMLoQKYJepiR7XYU9NZ46JHlbamoVPOkumSf1XzsuSyqvIU-PktkJhIL7HFMYRm8XD_nT3bscq7EDyZZuNTo_xrw6HZjrP5HGfxDowHknE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120806007</pqid></control><display><type>article</type><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><source>Publicly Available Content (ProQuest)</source><creator>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</creator><creatorcontrib>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</creatorcontrib><description>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16208805</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquatic resources ; Climate change ; Climatic changes ; Geospatial data ; Groundwater ; Groundwater recharge ; Hydrology ; Land use ; Machine learning ; Management ; Neural networks ; Pollutants ; Pollution ; South Korea ; Spatial data ; Surface water ; United Kingdom ; Urban areas ; Water ; Water quality ; Water resources management ; Water supply ; Water temperature ; Web portals</subject><ispartof>Sustainability, 2024-10, Vol.16 (20), p.8805</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</cites><orcidid>0000-0002-6541-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120806007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120806007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Heo, Joonghyeok</creatorcontrib><creatorcontrib>Lee, Jeongho</creatorcontrib><creatorcontrib>Hyun, Yunjung</creatorcontrib><creatorcontrib>Park, Joonkyu</creatorcontrib><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><title>Sustainability</title><description>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</description><subject>Aquatic resources</subject><subject>Climate change</subject><subject>Climatic changes</subject><subject>Geospatial data</subject><subject>Groundwater</subject><subject>Groundwater recharge</subject><subject>Hydrology</subject><subject>Land use</subject><subject>Machine learning</subject><subject>Management</subject><subject>Neural networks</subject><subject>Pollutants</subject><subject>Pollution</subject><subject>South Korea</subject><subject>Spatial data</subject><subject>Surface water</subject><subject>United Kingdom</subject><subject>Urban areas</subject><subject>Water</subject><subject>Water quality</subject><subject>Water resources management</subject><subject>Water supply</subject><subject>Water temperature</subject><subject>Web portals</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkdFK5DAUhous4KDe-AQBr1YcPWmbTnMpw6oDI7voLl6WM8lJt0ObjEkq-hC-sxlGUJOL_Pn5_pxwTpadcLgoCgmXYeRVDnUNYi-b5DDjUw4CfnzRB9lxCGtIqyi45NUke1vYSK3H2NmW3aH631liS0Jvk3HOlmg1m7tn8udsK29ftXe9azuFPbtzmvptLrrE2Oi71RiJ_UGPA0XygRnn2bzvBkz2YtigioE5yx7T3bN7Cm70ilJZiy0NZONRtm-wD3T8cR5m_65__Z3fTpe_bxbzq-VU5WIWp7kBXUsolKh1BVpwFFyXSaNQ0sg6l0qVpVA1GJSGVrnUqxXWJLjRuZ5BcZid7t7dePc0UojNOn3FppJNwVMLoQKYJepiR7XYU9NZ46JHlbamoVPOkumSf1XzsuSyqvIU-PktkJhIL7HFMYRm8XD_nT3bscq7EDyZZuNTo_xrw6HZjrP5HGfxDowHknE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Heo, Joonghyeok</creator><creator>Lee, Jeongho</creator><creator>Hyun, Yunjung</creator><creator>Park, Joonkyu</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6541-8489</orcidid></search><sort><creationdate>20241001</creationdate><title>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</title><author>Heo, Joonghyeok ; Lee, Jeongho ; Hyun, Yunjung ; Park, Joonkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic resources</topic><topic>Climate change</topic><topic>Climatic changes</topic><topic>Geospatial data</topic><topic>Groundwater</topic><topic>Groundwater recharge</topic><topic>Hydrology</topic><topic>Land use</topic><topic>Machine learning</topic><topic>Management</topic><topic>Neural networks</topic><topic>Pollutants</topic><topic>Pollution</topic><topic>South Korea</topic><topic>Spatial data</topic><topic>Surface water</topic><topic>United Kingdom</topic><topic>Urban areas</topic><topic>Water</topic><topic>Water quality</topic><topic>Water resources management</topic><topic>Water supply</topic><topic>Water temperature</topic><topic>Web portals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heo, Joonghyeok</creatorcontrib><creatorcontrib>Lee, Jeongho</creatorcontrib><creatorcontrib>Hyun, Yunjung</creatorcontrib><creatorcontrib>Park, Joonkyu</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heo, Joonghyeok</au><au>Lee, Jeongho</au><au>Hyun, Yunjung</au><au>Park, Joonkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management</atitle><jtitle>Sustainability</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>16</volume><issue>20</issue><spage>8805</spage><pages>8805-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The purpose of this study is to establish basic policies for managing the impacts of climate change on water resources using the integration of machine learning and land cover modeling. We predicted future changes in land cover within the water management and assessed its vulnerability to climate change. After confirming this vulnerability, we considered measures to improve climate resilience and presented future water resource parameters. We reviewed the finances available to promote climate projects, noting the major river management funds. The future project will serve as a stepping stone to promote climate resilience projects addressing water resource challenges exacerbated by future climate change. The study examined the results of analyzing changes in land cover maps due to climate change and assessed vulnerability in water management areas until 2050. According to the analysis results, the regulations for our study areas were set lower than those for other water management zones, resulting in a high rate of urbanization. Therefore, the climate resilience project in the water management area should be implemented first, despite the need for a long-term view in adapting to climate change.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16208805</doi><orcidid>https://orcid.org/0000-0002-6541-8489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-10, Vol.16 (20), p.8805
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3120806007
source Publicly Available Content (ProQuest)
subjects Aquatic resources
Climate change
Climatic changes
Geospatial data
Groundwater
Groundwater recharge
Hydrology
Land use
Machine learning
Management
Neural networks
Pollutants
Pollution
South Korea
Spatial data
Surface water
United Kingdom
Urban areas
Water
Water quality
Water resources management
Water supply
Water temperature
Web portals
title Integrating Machine Learning, Land Cover, and Hydrological Modeling to Contribute Parameters for Climate Impacts on Water Resource Management
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Machine%20Learning,%20Land%20Cover,%20and%20Hydrological%20Modeling%20to%20Contribute%20Parameters%20for%20Climate%20Impacts%20on%20Water%20Resource%20Management&rft.jtitle=Sustainability&rft.au=Heo,%20Joonghyeok&rft.date=2024-10-01&rft.volume=16&rft.issue=20&rft.spage=8805&rft.pages=8805-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16208805&rft_dat=%3Cgale_proqu%3EA814419662%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-2f0d8903c58d60d51a51d48d6a5c9f9829cc445c80fa9feb29dbba8e51fd2d703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120806007&rft_id=info:pmid/&rft_galeid=A814419662&rfr_iscdi=true