Loading…
AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios
Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficien...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mou, Xinyi Liang, Jingcong Lin, Jiayu Zhang, Xinnong Liu, Xiawei Yang, Shiyue Ye, Rong Chen, Lei Kuang, Haoyu Huang, Xuanjing Wei, Zhongyu |
description | Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121367365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121367365</sourcerecordid><originalsourceid>FETCH-proquest_journals_31213673653</originalsourceid><addsrcrecordid>eNqNy0sKwjAUheEgCBbtHi44LrSJbcWZiqLgrE6lhHCbpsZE83D9FnEBjs7g_86EJJSxIluvKJ2R1Pshz3Na1bQsWUJuW4kmNGg8bmCHRvQP7u7KSGisUFzD2QTUWo1KINgOLtzIyCXC9-gh9M5G2X-d4yKoN0Ij0HCnrF-Qace1x_S3c7I8Hq77U_Z09hXRh3aw0ZkxtaygBatqVpXsP_UBEkJD6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121367365</pqid></control><display><type>article</type><title>AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios</title><source>ProQuest Publicly Available Content database</source><creator>Mou, Xinyi ; Liang, Jingcong ; Lin, Jiayu ; Zhang, Xinnong ; Liu, Xiawei ; Yang, Shiyue ; Ye, Rong ; Chen, Lei ; Kuang, Haoyu ; Huang, Xuanjing ; Wei, Zhongyu</creator><creatorcontrib>Mou, Xinyi ; Liang, Jingcong ; Lin, Jiayu ; Zhang, Xinnong ; Liu, Xiawei ; Yang, Shiyue ; Ye, Rong ; Chen, Lei ; Kuang, Haoyu ; Huang, Xuanjing ; Wei, Zhongyu</creatorcontrib><description>Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autonomous navigation ; Benchmarks ; Complexity ; Large language models ; Reasoning</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3121367365?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mou, Xinyi</creatorcontrib><creatorcontrib>Liang, Jingcong</creatorcontrib><creatorcontrib>Lin, Jiayu</creatorcontrib><creatorcontrib>Zhang, Xinnong</creatorcontrib><creatorcontrib>Liu, Xiawei</creatorcontrib><creatorcontrib>Yang, Shiyue</creatorcontrib><creatorcontrib>Ye, Rong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Kuang, Haoyu</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><creatorcontrib>Wei, Zhongyu</creatorcontrib><title>AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios</title><title>arXiv.org</title><description>Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.</description><subject>Autonomous navigation</subject><subject>Benchmarks</subject><subject>Complexity</subject><subject>Large language models</subject><subject>Reasoning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNy0sKwjAUheEgCBbtHi44LrSJbcWZiqLgrE6lhHCbpsZE83D9FnEBjs7g_86EJJSxIluvKJ2R1Pshz3Na1bQsWUJuW4kmNGg8bmCHRvQP7u7KSGisUFzD2QTUWo1KINgOLtzIyCXC9-gh9M5G2X-d4yKoN0Ij0HCnrF-Qace1x_S3c7I8Hq77U_Z09hXRh3aw0ZkxtaygBatqVpXsP_UBEkJD6w</recordid><startdate>20241123</startdate><enddate>20241123</enddate><creator>Mou, Xinyi</creator><creator>Liang, Jingcong</creator><creator>Lin, Jiayu</creator><creator>Zhang, Xinnong</creator><creator>Liu, Xiawei</creator><creator>Yang, Shiyue</creator><creator>Ye, Rong</creator><creator>Chen, Lei</creator><creator>Kuang, Haoyu</creator><creator>Huang, Xuanjing</creator><creator>Wei, Zhongyu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241123</creationdate><title>AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios</title><author>Mou, Xinyi ; Liang, Jingcong ; Lin, Jiayu ; Zhang, Xinnong ; Liu, Xiawei ; Yang, Shiyue ; Ye, Rong ; Chen, Lei ; Kuang, Haoyu ; Huang, Xuanjing ; Wei, Zhongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31213673653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autonomous navigation</topic><topic>Benchmarks</topic><topic>Complexity</topic><topic>Large language models</topic><topic>Reasoning</topic><toplevel>online_resources</toplevel><creatorcontrib>Mou, Xinyi</creatorcontrib><creatorcontrib>Liang, Jingcong</creatorcontrib><creatorcontrib>Lin, Jiayu</creatorcontrib><creatorcontrib>Zhang, Xinnong</creatorcontrib><creatorcontrib>Liu, Xiawei</creatorcontrib><creatorcontrib>Yang, Shiyue</creatorcontrib><creatorcontrib>Ye, Rong</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Kuang, Haoyu</creatorcontrib><creatorcontrib>Huang, Xuanjing</creatorcontrib><creatorcontrib>Wei, Zhongyu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mou, Xinyi</au><au>Liang, Jingcong</au><au>Lin, Jiayu</au><au>Zhang, Xinnong</au><au>Liu, Xiawei</au><au>Yang, Shiyue</au><au>Ye, Rong</au><au>Chen, Lei</au><au>Kuang, Haoyu</au><au>Huang, Xuanjing</au><au>Wei, Zhongyu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios</atitle><jtitle>arXiv.org</jtitle><date>2024-11-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning. Code and data are available at \url{https://github.com/ljcleo/agent_sense}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3121367365 |
source | ProQuest Publicly Available Content database |
subjects | Autonomous navigation Benchmarks Complexity Large language models Reasoning |
title | AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A57%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AgentSense:%20Benchmarking%20Social%20Intelligence%20of%20Language%20Agents%20through%20Interactive%20Scenarios&rft.jtitle=arXiv.org&rft.au=Mou,%20Xinyi&rft.date=2024-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121367365%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31213673653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121367365&rft_id=info:pmid/&rfr_iscdi=true |