Loading…

Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell

Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. L...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.24 (5), p.n/a
Main Authors: Rojas, Fernando A., Hernández‐Benitez, Carlos, Ramírez, Víctor, Ieropoulous, Ioannis, Godínez, Luis A., Robles, Irma, Meza, David B., Rodríguez‐Valadez, Francisco J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3
container_end_page n/a
container_issue 5
container_start_page
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 24
creator Rojas, Fernando A.
Hernández‐Benitez, Carlos
Ramírez, Víctor
Ieropoulous, Ioannis
Godínez, Luis A.
Robles, Irma
Meza, David B.
Rodríguez‐Valadez, Francisco J
description Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.
doi_str_mv 10.1002/fuce.202300241
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121505612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121505612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMltiTvEzTUdUtVCpEgudLT9uSqrEDk6iqvx6HBWVkcn36J7z2T4IPVIyo4Sw53KwMGOE8SQEvUITmlOZ5YUU15dZ5LforusOhNB5UYgJ-t40rbY9DiWGGmwfgwOsY9R-Dw34HmvvfjeV1TW2wfskquA7HDzuPwG34QgR78FD1ONiZNk0N5XFDTQmsQAnEYOpEqEcIGGgru_RTanrDh5-zynarVcfy7ds-_66Wb5sM5s-QzNG3cIAM7xgTnPODCElSJhLVy7AUT63whCmcydyqYkwzAheFk5AriXVRvMpejpz2xi-Buh6dQhD9OlKxSmjksicsuSanV3pnV0XoVRtrBodT4oSNfarxn7Vpd8UWJwDx6qG0z9utd4tV3_ZH9_sgVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121505612</pqid></control><display><type>article</type><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</creator><creatorcontrib>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</creatorcontrib><description>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202300241</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Aeration ; Biochemical fuel cells ; carbon felt‐activated carbon cathode ; ceramic handcraft ; Ceramics ; Cloth ; electrical connections ; electrode arrangement ; Energy consumption ; low cost ; Membranes ; microbial fuel cell ; Microorganisms ; modular ; Modular systems ; Modules ; Sanitation</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.24 (5), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</cites><orcidid>0000-0001-9257-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rojas, Fernando A.</creatorcontrib><creatorcontrib>Hernández‐Benitez, Carlos</creatorcontrib><creatorcontrib>Ramírez, Víctor</creatorcontrib><creatorcontrib>Ieropoulous, Ioannis</creatorcontrib><creatorcontrib>Godínez, Luis A.</creatorcontrib><creatorcontrib>Robles, Irma</creatorcontrib><creatorcontrib>Meza, David B.</creatorcontrib><creatorcontrib>Rodríguez‐Valadez, Francisco J</creatorcontrib><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</description><subject>Activated carbon</subject><subject>Aeration</subject><subject>Biochemical fuel cells</subject><subject>carbon felt‐activated carbon cathode</subject><subject>ceramic handcraft</subject><subject>Ceramics</subject><subject>Cloth</subject><subject>electrical connections</subject><subject>electrode arrangement</subject><subject>Energy consumption</subject><subject>low cost</subject><subject>Membranes</subject><subject>microbial fuel cell</subject><subject>Microorganisms</subject><subject>modular</subject><subject>Modular systems</subject><subject>Modules</subject><subject>Sanitation</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMltiTvEzTUdUtVCpEgudLT9uSqrEDk6iqvx6HBWVkcn36J7z2T4IPVIyo4Sw53KwMGOE8SQEvUITmlOZ5YUU15dZ5LforusOhNB5UYgJ-t40rbY9DiWGGmwfgwOsY9R-Dw34HmvvfjeV1TW2wfskquA7HDzuPwG34QgR78FD1ONiZNk0N5XFDTQmsQAnEYOpEqEcIGGgru_RTanrDh5-zynarVcfy7ds-_66Wb5sM5s-QzNG3cIAM7xgTnPODCElSJhLVy7AUT63whCmcydyqYkwzAheFk5AriXVRvMpejpz2xi-Buh6dQhD9OlKxSmjksicsuSanV3pnV0XoVRtrBodT4oSNfarxn7Vpd8UWJwDx6qG0z9utd4tV3_ZH9_sgVE</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Rojas, Fernando A.</creator><creator>Hernández‐Benitez, Carlos</creator><creator>Ramírez, Víctor</creator><creator>Ieropoulous, Ioannis</creator><creator>Godínez, Luis A.</creator><creator>Robles, Irma</creator><creator>Meza, David B.</creator><creator>Rodríguez‐Valadez, Francisco J</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9257-552X</orcidid></search><sort><creationdate>202410</creationdate><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><author>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Aeration</topic><topic>Biochemical fuel cells</topic><topic>carbon felt‐activated carbon cathode</topic><topic>ceramic handcraft</topic><topic>Ceramics</topic><topic>Cloth</topic><topic>electrical connections</topic><topic>electrode arrangement</topic><topic>Energy consumption</topic><topic>low cost</topic><topic>Membranes</topic><topic>microbial fuel cell</topic><topic>Microorganisms</topic><topic>modular</topic><topic>Modular systems</topic><topic>Modules</topic><topic>Sanitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas, Fernando A.</creatorcontrib><creatorcontrib>Hernández‐Benitez, Carlos</creatorcontrib><creatorcontrib>Ramírez, Víctor</creatorcontrib><creatorcontrib>Ieropoulous, Ioannis</creatorcontrib><creatorcontrib>Godínez, Luis A.</creatorcontrib><creatorcontrib>Robles, Irma</creatorcontrib><creatorcontrib>Meza, David B.</creatorcontrib><creatorcontrib>Rodríguez‐Valadez, Francisco J</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas, Fernando A.</au><au>Hernández‐Benitez, Carlos</au><au>Ramírez, Víctor</au><au>Ieropoulous, Ioannis</au><au>Godínez, Luis A.</au><au>Robles, Irma</au><au>Meza, David B.</au><au>Rodríguez‐Valadez, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>24</volume><issue>5</issue><epage>n/a</epage><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202300241</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-552X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.24 (5), p.n/a
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_3121505612
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Activated carbon
Aeration
Biochemical fuel cells
carbon felt‐activated carbon cathode
ceramic handcraft
Ceramics
Cloth
electrical connections
electrode arrangement
Energy consumption
low cost
Membranes
microbial fuel cell
Microorganisms
modular
Modular systems
Modules
Sanitation
title Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20electrode%20arrangement%20and%20electrical%20connections%20on%20the%20power%20generation%20of%20ceramic%20membrane%20microbial%20fuel%20cell&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rojas,%20Fernando%20A.&rft.date=2024-10&rft.volume=24&rft.issue=5&rft.epage=n/a&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202300241&rft_dat=%3Cproquest_cross%3E3121505612%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121505612&rft_id=info:pmid/&rfr_iscdi=true