Loading…
Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell
Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. L...
Saved in:
Published in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.24 (5), p.n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 24 |
creator | Rojas, Fernando A. Hernández‐Benitez, Carlos Ramírez, Víctor Ieropoulous, Ioannis Godínez, Luis A. Robles, Irma Meza, David B. Rodríguez‐Valadez, Francisco J |
description | Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules. |
doi_str_mv | 10.1002/fuce.202300241 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3121505612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121505612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMltiTvEzTUdUtVCpEgudLT9uSqrEDk6iqvx6HBWVkcn36J7z2T4IPVIyo4Sw53KwMGOE8SQEvUITmlOZ5YUU15dZ5LforusOhNB5UYgJ-t40rbY9DiWGGmwfgwOsY9R-Dw34HmvvfjeV1TW2wfskquA7HDzuPwG34QgR78FD1ONiZNk0N5XFDTQmsQAnEYOpEqEcIGGgru_RTanrDh5-zynarVcfy7ds-_66Wb5sM5s-QzNG3cIAM7xgTnPODCElSJhLVy7AUT63whCmcydyqYkwzAheFk5AriXVRvMpejpz2xi-Buh6dQhD9OlKxSmjksicsuSanV3pnV0XoVRtrBodT4oSNfarxn7Vpd8UWJwDx6qG0z9utd4tV3_ZH9_sgVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121505612</pqid></control><display><type>article</type><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</creator><creatorcontrib>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</creatorcontrib><description>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.202300241</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Aeration ; Biochemical fuel cells ; carbon felt‐activated carbon cathode ; ceramic handcraft ; Ceramics ; Cloth ; electrical connections ; electrode arrangement ; Energy consumption ; low cost ; Membranes ; microbial fuel cell ; Microorganisms ; modular ; Modular systems ; Modules ; Sanitation</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.24 (5), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</cites><orcidid>0000-0001-9257-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rojas, Fernando A.</creatorcontrib><creatorcontrib>Hernández‐Benitez, Carlos</creatorcontrib><creatorcontrib>Ramírez, Víctor</creatorcontrib><creatorcontrib>Ieropoulous, Ioannis</creatorcontrib><creatorcontrib>Godínez, Luis A.</creatorcontrib><creatorcontrib>Robles, Irma</creatorcontrib><creatorcontrib>Meza, David B.</creatorcontrib><creatorcontrib>Rodríguez‐Valadez, Francisco J</creatorcontrib><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><description>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</description><subject>Activated carbon</subject><subject>Aeration</subject><subject>Biochemical fuel cells</subject><subject>carbon felt‐activated carbon cathode</subject><subject>ceramic handcraft</subject><subject>Ceramics</subject><subject>Cloth</subject><subject>electrical connections</subject><subject>electrode arrangement</subject><subject>Energy consumption</subject><subject>low cost</subject><subject>Membranes</subject><subject>microbial fuel cell</subject><subject>Microorganisms</subject><subject>modular</subject><subject>Modular systems</subject><subject>Modules</subject><subject>Sanitation</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMltiTvEzTUdUtVCpEgudLT9uSqrEDk6iqvx6HBWVkcn36J7z2T4IPVIyo4Sw53KwMGOE8SQEvUITmlOZ5YUU15dZ5LforusOhNB5UYgJ-t40rbY9DiWGGmwfgwOsY9R-Dw34HmvvfjeV1TW2wfskquA7HDzuPwG34QgR78FD1ONiZNk0N5XFDTQmsQAnEYOpEqEcIGGgru_RTanrDh5-zynarVcfy7ds-_66Wb5sM5s-QzNG3cIAM7xgTnPODCElSJhLVy7AUT63whCmcydyqYkwzAheFk5AriXVRvMpejpz2xi-Buh6dQhD9OlKxSmjksicsuSanV3pnV0XoVRtrBodT4oSNfarxn7Vpd8UWJwDx6qG0z9utd4tV3_ZH9_sgVE</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Rojas, Fernando A.</creator><creator>Hernández‐Benitez, Carlos</creator><creator>Ramírez, Víctor</creator><creator>Ieropoulous, Ioannis</creator><creator>Godínez, Luis A.</creator><creator>Robles, Irma</creator><creator>Meza, David B.</creator><creator>Rodríguez‐Valadez, Francisco J</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9257-552X</orcidid></search><sort><creationdate>202410</creationdate><title>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</title><author>Rojas, Fernando A. ; Hernández‐Benitez, Carlos ; Ramírez, Víctor ; Ieropoulous, Ioannis ; Godínez, Luis A. ; Robles, Irma ; Meza, David B. ; Rodríguez‐Valadez, Francisco J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Aeration</topic><topic>Biochemical fuel cells</topic><topic>carbon felt‐activated carbon cathode</topic><topic>ceramic handcraft</topic><topic>Ceramics</topic><topic>Cloth</topic><topic>electrical connections</topic><topic>electrode arrangement</topic><topic>Energy consumption</topic><topic>low cost</topic><topic>Membranes</topic><topic>microbial fuel cell</topic><topic>Microorganisms</topic><topic>modular</topic><topic>Modular systems</topic><topic>Modules</topic><topic>Sanitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas, Fernando A.</creatorcontrib><creatorcontrib>Hernández‐Benitez, Carlos</creatorcontrib><creatorcontrib>Ramírez, Víctor</creatorcontrib><creatorcontrib>Ieropoulous, Ioannis</creatorcontrib><creatorcontrib>Godínez, Luis A.</creatorcontrib><creatorcontrib>Robles, Irma</creatorcontrib><creatorcontrib>Meza, David B.</creatorcontrib><creatorcontrib>Rodríguez‐Valadez, Francisco J</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas, Fernando A.</au><au>Hernández‐Benitez, Carlos</au><au>Ramírez, Víctor</au><au>Ieropoulous, Ioannis</au><au>Godínez, Luis A.</au><au>Robles, Irma</au><au>Meza, David B.</au><au>Rodríguez‐Valadez, Francisco J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>24</volume><issue>5</issue><epage>n/a</epage><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Some of the most popular technologies for wastewater sanitation, still face serious limitations related to high energy consumption requirements. In this context, microbial fuel cells (MFCs) constitute a promising approach since they do not require aeration and produce electricity at the same time. Limitations for these devices, however, are related to the cost of the constituents and the functionality of the arrangement. In this work, a semi‐cylindrical ceramic MFC was designed and constructed using a low‐cost commercial ceramic handcraft as a membrane, carbon felt, carbon cloth, and carbon cloth/activated carbon in different arrangements for the anode and cathode components. The best results were obtained using carbon felt as an anode and a cathodic zone built with carbon felt in which void regions were filled with activated carbon. This arrangement produced 85 mWm−2 for each cell. Evaluating the performance of the MFC in a modular system with eight cells using a different number of separations inside the module and different electrical connections, resulting in a 4‐compartment module that produced 90 mWm−2 with one single module and 95 mWm−2 with a serial arrangement of two modules.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/fuce.202300241</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9257-552X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.24 (5), p.n/a |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_3121505612 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list) |
subjects | Activated carbon Aeration Biochemical fuel cells carbon felt‐activated carbon cathode ceramic handcraft Ceramics Cloth electrical connections electrode arrangement Energy consumption low cost Membranes microbial fuel cell Microorganisms modular Modular systems Modules Sanitation |
title | Impact of electrode arrangement and electrical connections on the power generation of ceramic membrane microbial fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A04%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20electrode%20arrangement%20and%20electrical%20connections%20on%20the%20power%20generation%20of%20ceramic%20membrane%20microbial%20fuel%20cell&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rojas,%20Fernando%20A.&rft.date=2024-10&rft.volume=24&rft.issue=5&rft.epage=n/a&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.202300241&rft_dat=%3Cproquest_cross%3E3121505612%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2021-21d9be2b382da332b00fe5e75df9ed137c4b02a6d465a04b2b43f8d4e6a51aba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121505612&rft_id=info:pmid/&rfr_iscdi=true |