Loading…

Beyond Positive History: Re-ranking with List-level Hybrid Feedback

As the last stage of recommender systems, re-ranking generates a re-ordered list that aligns with the user's preference. However, previous works generally focus on item-level positive feedback as history (e.g., only clicked items) and ignore that users provide positive or negative feedback on i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Weng, Muyan, Yunjia Xi, Liu, Weiwen, Chen, Bo, Lin, Jianghao, Tang, Ruiming, Zhang, Weinan, Yu, Yong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Weng, Muyan
Yunjia Xi
Liu, Weiwen
Chen, Bo
Lin, Jianghao
Tang, Ruiming
Zhang, Weinan
Yu, Yong
description As the last stage of recommender systems, re-ranking generates a re-ordered list that aligns with the user's preference. However, previous works generally focus on item-level positive feedback as history (e.g., only clicked items) and ignore that users provide positive or negative feedback on items in the entire list. This list-level hybrid feedback can reveal users' holistic preferences and reflect users' comparison behavior patterns manifesting within a list. Such patterns could predict user behaviors on candidate lists, thus aiding better re-ranking. Despite appealing benefits, extracting and integrating preferences and behavior patterns from list-level hybrid feedback into re-ranking multiple items remains challenging. To this end, we propose Re-ranking with List-level Hybrid Feedback (dubbed RELIFE). It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list. Moreover, for better integration of patterns, contrastive learning is adopted to align the behavior patterns of candidate and historical lists. Extensive experiments show that RELIFE significantly outperforms SOTA re-ranking baselines.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3121792099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121792099</sourcerecordid><originalsourceid>FETCH-proquest_journals_31217920993</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadB_NbZnZMEg8dIrrLzK-aylbbNPz3eegHdHoPzzsjAQgRsd0GYEFC5xrOOWwTiGMRkOyAo9E1PRunvBqQFsp5Y8c9vSCzUrdKP-hH-Sc9TcA6HLCjxVhZVdMcsa7krV2R-V12DsNfl2SdH69ZwV7WvHt0vmxMb_VEpYggSlLgaSr-u77CVzmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121792099</pqid></control><display><type>article</type><title>Beyond Positive History: Re-ranking with List-level Hybrid Feedback</title><source>ProQuest - Publicly Available Content Database</source><creator>Weng, Muyan ; Yunjia Xi ; Liu, Weiwen ; Chen, Bo ; Lin, Jianghao ; Tang, Ruiming ; Zhang, Weinan ; Yu, Yong</creator><creatorcontrib>Weng, Muyan ; Yunjia Xi ; Liu, Weiwen ; Chen, Bo ; Lin, Jianghao ; Tang, Ruiming ; Zhang, Weinan ; Yu, Yong</creatorcontrib><description>As the last stage of recommender systems, re-ranking generates a re-ordered list that aligns with the user's preference. However, previous works generally focus on item-level positive feedback as history (e.g., only clicked items) and ignore that users provide positive or negative feedback on items in the entire list. This list-level hybrid feedback can reveal users' holistic preferences and reflect users' comparison behavior patterns manifesting within a list. Such patterns could predict user behaviors on candidate lists, thus aiding better re-ranking. Despite appealing benefits, extracting and integrating preferences and behavior patterns from list-level hybrid feedback into re-ranking multiple items remains challenging. To this end, we propose Re-ranking with List-level Hybrid Feedback (dubbed RELIFE). It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list. Moreover, for better integration of patterns, contrastive learning is adopted to align the behavior patterns of candidate and historical lists. Extensive experiments show that RELIFE significantly outperforms SOTA re-ranking baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Negative feedback ; Positive feedback ; Preferences ; Ranking ; Recommender systems ; User behavior</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3121792099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Weng, Muyan</creatorcontrib><creatorcontrib>Yunjia Xi</creatorcontrib><creatorcontrib>Liu, Weiwen</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Lin, Jianghao</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><creatorcontrib>Zhang, Weinan</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><title>Beyond Positive History: Re-ranking with List-level Hybrid Feedback</title><title>arXiv.org</title><description>As the last stage of recommender systems, re-ranking generates a re-ordered list that aligns with the user's preference. However, previous works generally focus on item-level positive feedback as history (e.g., only clicked items) and ignore that users provide positive or negative feedback on items in the entire list. This list-level hybrid feedback can reveal users' holistic preferences and reflect users' comparison behavior patterns manifesting within a list. Such patterns could predict user behaviors on candidate lists, thus aiding better re-ranking. Despite appealing benefits, extracting and integrating preferences and behavior patterns from list-level hybrid feedback into re-ranking multiple items remains challenging. To this end, we propose Re-ranking with List-level Hybrid Feedback (dubbed RELIFE). It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list. Moreover, for better integration of patterns, contrastive learning is adopted to align the behavior patterns of candidate and historical lists. Extensive experiments show that RELIFE significantly outperforms SOTA re-ranking baselines.</description><subject>Negative feedback</subject><subject>Positive feedback</subject><subject>Preferences</subject><subject>Ranking</subject><subject>Recommender systems</subject><subject>User behavior</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadB_NbZnZMEg8dIrrLzK-aylbbNPz3eegHdHoPzzsjAQgRsd0GYEFC5xrOOWwTiGMRkOyAo9E1PRunvBqQFsp5Y8c9vSCzUrdKP-hH-Sc9TcA6HLCjxVhZVdMcsa7krV2R-V12DsNfl2SdH69ZwV7WvHt0vmxMb_VEpYggSlLgaSr-u77CVzmw</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Weng, Muyan</creator><creator>Yunjia Xi</creator><creator>Liu, Weiwen</creator><creator>Chen, Bo</creator><creator>Lin, Jianghao</creator><creator>Tang, Ruiming</creator><creator>Zhang, Weinan</creator><creator>Yu, Yong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241028</creationdate><title>Beyond Positive History: Re-ranking with List-level Hybrid Feedback</title><author>Weng, Muyan ; Yunjia Xi ; Liu, Weiwen ; Chen, Bo ; Lin, Jianghao ; Tang, Ruiming ; Zhang, Weinan ; Yu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31217920993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Negative feedback</topic><topic>Positive feedback</topic><topic>Preferences</topic><topic>Ranking</topic><topic>Recommender systems</topic><topic>User behavior</topic><toplevel>online_resources</toplevel><creatorcontrib>Weng, Muyan</creatorcontrib><creatorcontrib>Yunjia Xi</creatorcontrib><creatorcontrib>Liu, Weiwen</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Lin, Jianghao</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><creatorcontrib>Zhang, Weinan</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Muyan</au><au>Yunjia Xi</au><au>Liu, Weiwen</au><au>Chen, Bo</au><au>Lin, Jianghao</au><au>Tang, Ruiming</au><au>Zhang, Weinan</au><au>Yu, Yong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Beyond Positive History: Re-ranking with List-level Hybrid Feedback</atitle><jtitle>arXiv.org</jtitle><date>2024-10-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>As the last stage of recommender systems, re-ranking generates a re-ordered list that aligns with the user's preference. However, previous works generally focus on item-level positive feedback as history (e.g., only clicked items) and ignore that users provide positive or negative feedback on items in the entire list. This list-level hybrid feedback can reveal users' holistic preferences and reflect users' comparison behavior patterns manifesting within a list. Such patterns could predict user behaviors on candidate lists, thus aiding better re-ranking. Despite appealing benefits, extracting and integrating preferences and behavior patterns from list-level hybrid feedback into re-ranking multiple items remains challenging. To this end, we propose Re-ranking with List-level Hybrid Feedback (dubbed RELIFE). It captures user's preferences and behavior patterns with three modules: a Disentangled Interest Miner to disentangle the user's preferences into interests and disinterests, a Sequential Preference Mixer to learn users' entangled preferences considering the context of feedback, and a Comparison-aware Pattern Extractor to capture user's behavior patterns within each list. Moreover, for better integration of patterns, contrastive learning is adopted to align the behavior patterns of candidate and historical lists. Extensive experiments show that RELIFE significantly outperforms SOTA re-ranking baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3121792099
source ProQuest - Publicly Available Content Database
subjects Negative feedback
Positive feedback
Preferences
Ranking
Recommender systems
User behavior
title Beyond Positive History: Re-ranking with List-level Hybrid Feedback
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Beyond%20Positive%20History:%20Re-ranking%20with%20List-level%20Hybrid%20Feedback&rft.jtitle=arXiv.org&rft.au=Weng,%20Muyan&rft.date=2024-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3121792099%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31217920993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121792099&rft_id=info:pmid/&rfr_iscdi=true