Loading…

CuO-Catalyzed Synthesis, Characterization, and Computational Studies of Ethyl 2-Cyano-3-(1H-indol-3-yl)-3-phenylpropanoate Derivatives

A one-pot multicomponent method employing substituted indole, ethyl cyanoacetate and aromatic aldehyde was found as an effective catalytic procedure for the synthesis of a novel indole derivatives. The potential of CuO nanoparticles as nanocatalysts for the Knoevenagel condensation and the synthesis...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of general chemistry 2024-09, Vol.94 (9), p.2321-2330
Main Authors: Mishra, A. K., Das, R., Serdaroğlu, G., Pandit, J., Mishra, P., Bahe, A. K., Shukla, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A one-pot multicomponent method employing substituted indole, ethyl cyanoacetate and aromatic aldehyde was found as an effective catalytic procedure for the synthesis of a novel indole derivatives. The potential of CuO nanoparticles as nanocatalysts for the Knoevenagel condensation and the synthesis of new indole derivatives was investigated. X-Ray diffraction was used to measure the size of the CuO nanoparticles. CuO nanoparticles can be recycled and used again after the reaction course. The ADMET analysis and drug-likeness results indicated that indole derivatives satisfied Lipinski’s principles and drug-likeness requirements. The reactivity indices and potential areas obtained from the FMO experiments were successfully used to a range of molecular systems because they yield valuable information. Here, we determined the oxobutanoate derivative’s critical areas and likely reactivity directions. The resultant indole derivatives were subjected to various analytical techniques, including mass spectroscopy, 1 H and 13 C NMR spectroscopy, FT-IR and mass spectrometry.
ISSN:1070-3632
1608-3350
DOI:10.1134/S1070363224090135