Loading…
Synergistic Effect of Fe-Amorphous and Bionic Microtexture in Enhancing High-Temperature Tribological Properties of Al-12Si Piston Materials
This study designs new Fe-amorphous/Al-12Si piston composite materials. The effect and synergistic mechanism of the addition of Fe-amorphous and bionic microtexture laser surface on the high-temperature friction performance of Al-12Si piston material under mixed lubrication conditions of B30 biodies...
Saved in:
Published in: | Transactions of the Indian Institute of Metals 2024-11, Vol.77 (11), p.3983-3990 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study designs new Fe-amorphous/Al-12Si piston composite materials. The effect and synergistic mechanism of the addition of Fe-amorphous and bionic microtexture laser surface on the high-temperature friction performance of Al-12Si piston material under mixed lubrication conditions of B30 biodiesel and engine lubricating oil have been studied. The results indicate that the frictional properties of the untextured surface of the Fe-amorphous/Al-12Si composite material depend primarily on the amount of Fe-amorphous added. The 10 wt% Fe-amorphous/Al-12Si composite exhibits a dense, void-free microstructure with optimum anti-friction and anti-wear performance. It is noteworthy that the interaction between the “anchoring” effect caused by the Fe-amorphous addition and the synergistic effect of the bionic microtexture providing a stable lubricating environment further enhances the high-temperature friction properties of Al-12Si. |
---|---|
ISSN: | 0972-2815 0975-1645 |
DOI: | 10.1007/s12666-024-03455-0 |