Loading…

Air and Moisture Tolerant Synthesis of a Chelated bis(NHC) Methylpalladium(ii) Complex Relevant to Alkyl Migration Processes in Catalysis

An air- and moisture-tolerant alternate synthetic pathway to the preparation of a cationic chelated bis(NHC) methylpalladium(ii) complex, [{(MesIm)2CH2}Pd(Me)(NCMe)][PF6], is described. The pathway involves the isolation of a bis(NHC) AgI complex, [{(MesIm)2CH2}2Ag2][PF6]2, via metallation of the co...

Full description

Saved in:
Bibliographic Details
Published in:Critical studies in media communication 2020-01, Vol.73 (12), p.1158
Main Authors: Gardiner, Michael G, Ho, Curtis C, McGuinness, David S, Liu, Yi Ling
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An air- and moisture-tolerant alternate synthetic pathway to the preparation of a cationic chelated bis(NHC) methylpalladium(ii) complex, [{(MesIm)2CH2}Pd(Me)(NCMe)][PF6], is described. The pathway involves the isolation of a bis(NHC) AgI complex, [{(MesIm)2CH2}2Ag2][PF6]2, via metallation of the corresponding diimidazolium salt with Ag2O followed by carbene transfer to [(COD)PdBrMe]. This new method avoids a previously reported unstable intermediate that displayed rapid decomposition at room temperature, attaining the targeted cationic methylpalladium(ii) complex in high yield. CO/ethylene copolymerisation catalysis trials are reported showing solvent dependent catalyst lifetime and copolymer yields. Preliminary ethylene insertion studies are also outlined revealing possible pathways leading towards catalyst deactivation.
ISSN:1529-5036
DOI:10.1071/CH20194