Loading…
Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations
In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theo...
Saved in:
Published in: | Mathematische annalen 2024-12, Vol.390 (4), p.5415-5470 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833 |
container_end_page | 5470 |
container_issue | 4 |
container_start_page | 5415 |
container_title | Mathematische annalen |
container_volume | 390 |
creator | Cui, Hongyong López, Rodiak Nicolai Figueroa López-Lázaro, Heraclio Ledgar Simsen, Jacson |
description | In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension. |
doi_str_mv | 10.1007/s00208-024-02908-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3122603040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122603040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</originalsourceid><addsrcrecordid>eNp9kE1OxDAMhSMEEsPABVhFYl1wkrZpl2jEnzTAAlhHaeNCh_5Nkg6aHXfghpyEQJHYsbBs6b3Plh8hxwxOGYA8cwAcsgh4HCoPk9whMxYLHrEM5C6ZBT2JkkywfXLg3AoABEAyI-3t2Pg62uhmREPNttNtXeqGuq3z2Drad9TXLUYGB-wMdp626G1dUjfoEh19q_0L1cPQBMrXfeeo7-md3tRoP98_Hnz_Gky4HifxkOxVunF49Nvn5Ony4nFxHS3vr24W58uo5AA-YnGJuciLJEPGcoOYcgElF5JBwdNCCsOEqYqiSHNm0lyirliVpRUiK43MhJiTk2nvYPv1iM6rVT_aLpxUgnGehudjCC4-uUrbO2exUoOtW223ioH6jlVNsaoQq_qJVckAiQlywdw9o_1b_Q_1BSuAfds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122603040</pqid></control><display><type>article</type><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><source>Springer Nature</source><creator>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</creator><creatorcontrib>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</creatorcontrib><description>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-024-02908-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attractors (mathematics) ; Dynamical systems ; Energy methods ; Fluid flow ; Fractal geometry ; Mathematics ; Mathematics and Statistics ; Metric space ; Navier-Stokes equations ; Time dependence</subject><ispartof>Mathematische annalen, 2024-12, Vol.390 (4), p.5415-5470</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</cites><orcidid>0000-0003-0457-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Cui, Hongyong</creatorcontrib><creatorcontrib>López, Rodiak Nicolai Figueroa</creatorcontrib><creatorcontrib>López-Lázaro, Heraclio Ledgar</creatorcontrib><creatorcontrib>Simsen, Jacson</creatorcontrib><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</description><subject>Attractors (mathematics)</subject><subject>Dynamical systems</subject><subject>Energy methods</subject><subject>Fluid flow</subject><subject>Fractal geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Navier-Stokes equations</subject><subject>Time dependence</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OxDAMhSMEEsPABVhFYl1wkrZpl2jEnzTAAlhHaeNCh_5Nkg6aHXfghpyEQJHYsbBs6b3Plh8hxwxOGYA8cwAcsgh4HCoPk9whMxYLHrEM5C6ZBT2JkkywfXLg3AoABEAyI-3t2Pg62uhmREPNttNtXeqGuq3z2Drad9TXLUYGB-wMdp626G1dUjfoEh19q_0L1cPQBMrXfeeo7-md3tRoP98_Hnz_Gky4HifxkOxVunF49Nvn5Ony4nFxHS3vr24W58uo5AA-YnGJuciLJEPGcoOYcgElF5JBwdNCCsOEqYqiSHNm0lyirliVpRUiK43MhJiTk2nvYPv1iM6rVT_aLpxUgnGehudjCC4-uUrbO2exUoOtW223ioH6jlVNsaoQq_qJVckAiQlywdw9o_1b_Q_1BSuAfds</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cui, Hongyong</creator><creator>López, Rodiak Nicolai Figueroa</creator><creator>López-Lázaro, Heraclio Ledgar</creator><creator>Simsen, Jacson</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0457-117X</orcidid></search><sort><creationdate>20241201</creationdate><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><author>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attractors (mathematics)</topic><topic>Dynamical systems</topic><topic>Energy methods</topic><topic>Fluid flow</topic><topic>Fractal geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Navier-Stokes equations</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Hongyong</creatorcontrib><creatorcontrib>López, Rodiak Nicolai Figueroa</creatorcontrib><creatorcontrib>López-Lázaro, Heraclio Ledgar</creatorcontrib><creatorcontrib>Simsen, Jacson</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Hongyong</au><au>López, Rodiak Nicolai Figueroa</au><au>López-Lázaro, Heraclio Ledgar</au><au>Simsen, Jacson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>390</volume><issue>4</issue><spage>5415</spage><epage>5470</epage><pages>5415-5470</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-024-02908-7</doi><tpages>56</tpages><orcidid>https://orcid.org/0000-0003-0457-117X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2024-12, Vol.390 (4), p.5415-5470 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_3122603040 |
source | Springer Nature |
subjects | Attractors (mathematics) Dynamical systems Energy methods Fluid flow Fractal geometry Mathematics Mathematics and Statistics Metric space Navier-Stokes equations Time dependence |
title | Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-valued%20dynamical%20systems%20on%20time-dependent%20metric%20spaces%20with%20applications%20to%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Mathematische%20annalen&rft.au=Cui,%20Hongyong&rft.date=2024-12-01&rft.volume=390&rft.issue=4&rft.spage=5415&rft.epage=5470&rft.pages=5415-5470&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-024-02908-7&rft_dat=%3Cproquest_cross%3E3122603040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122603040&rft_id=info:pmid/&rfr_iscdi=true |