Loading…

Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations

In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theo...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische annalen 2024-12, Vol.390 (4), p.5415-5470
Main Authors: Cui, Hongyong, López, Rodiak Nicolai Figueroa, López-Lázaro, Heraclio Ledgar, Simsen, Jacson
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833
container_end_page 5470
container_issue 4
container_start_page 5415
container_title Mathematische annalen
container_volume 390
creator Cui, Hongyong
López, Rodiak Nicolai Figueroa
López-Lázaro, Heraclio Ledgar
Simsen, Jacson
description In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.
doi_str_mv 10.1007/s00208-024-02908-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3122603040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122603040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</originalsourceid><addsrcrecordid>eNp9kE1OxDAMhSMEEsPABVhFYl1wkrZpl2jEnzTAAlhHaeNCh_5Nkg6aHXfghpyEQJHYsbBs6b3Plh8hxwxOGYA8cwAcsgh4HCoPk9whMxYLHrEM5C6ZBT2JkkywfXLg3AoABEAyI-3t2Pg62uhmREPNttNtXeqGuq3z2Drad9TXLUYGB-wMdp626G1dUjfoEh19q_0L1cPQBMrXfeeo7-md3tRoP98_Hnz_Gky4HifxkOxVunF49Nvn5Ony4nFxHS3vr24W58uo5AA-YnGJuciLJEPGcoOYcgElF5JBwdNCCsOEqYqiSHNm0lyirliVpRUiK43MhJiTk2nvYPv1iM6rVT_aLpxUgnGehudjCC4-uUrbO2exUoOtW223ioH6jlVNsaoQq_qJVckAiQlywdw9o_1b_Q_1BSuAfds</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122603040</pqid></control><display><type>article</type><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><source>Springer Nature</source><creator>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</creator><creatorcontrib>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</creatorcontrib><description>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-024-02908-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attractors (mathematics) ; Dynamical systems ; Energy methods ; Fluid flow ; Fractal geometry ; Mathematics ; Mathematics and Statistics ; Metric space ; Navier-Stokes equations ; Time dependence</subject><ispartof>Mathematische annalen, 2024-12, Vol.390 (4), p.5415-5470</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</cites><orcidid>0000-0003-0457-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Cui, Hongyong</creatorcontrib><creatorcontrib>López, Rodiak Nicolai Figueroa</creatorcontrib><creatorcontrib>López-Lázaro, Heraclio Ledgar</creatorcontrib><creatorcontrib>Simsen, Jacson</creatorcontrib><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</description><subject>Attractors (mathematics)</subject><subject>Dynamical systems</subject><subject>Energy methods</subject><subject>Fluid flow</subject><subject>Fractal geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Navier-Stokes equations</subject><subject>Time dependence</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OxDAMhSMEEsPABVhFYl1wkrZpl2jEnzTAAlhHaeNCh_5Nkg6aHXfghpyEQJHYsbBs6b3Plh8hxwxOGYA8cwAcsgh4HCoPk9whMxYLHrEM5C6ZBT2JkkywfXLg3AoABEAyI-3t2Pg62uhmREPNttNtXeqGuq3z2Drad9TXLUYGB-wMdp626G1dUjfoEh19q_0L1cPQBMrXfeeo7-md3tRoP98_Hnz_Gky4HifxkOxVunF49Nvn5Ony4nFxHS3vr24W58uo5AA-YnGJuciLJEPGcoOYcgElF5JBwdNCCsOEqYqiSHNm0lyirliVpRUiK43MhJiTk2nvYPv1iM6rVT_aLpxUgnGehudjCC4-uUrbO2exUoOtW223ioH6jlVNsaoQq_qJVckAiQlywdw9o_1b_Q_1BSuAfds</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Cui, Hongyong</creator><creator>López, Rodiak Nicolai Figueroa</creator><creator>López-Lázaro, Heraclio Ledgar</creator><creator>Simsen, Jacson</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0457-117X</orcidid></search><sort><creationdate>20241201</creationdate><title>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</title><author>Cui, Hongyong ; López, Rodiak Nicolai Figueroa ; López-Lázaro, Heraclio Ledgar ; Simsen, Jacson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attractors (mathematics)</topic><topic>Dynamical systems</topic><topic>Energy methods</topic><topic>Fluid flow</topic><topic>Fractal geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Navier-Stokes equations</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Hongyong</creatorcontrib><creatorcontrib>López, Rodiak Nicolai Figueroa</creatorcontrib><creatorcontrib>López-Lázaro, Heraclio Ledgar</creatorcontrib><creatorcontrib>Simsen, Jacson</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Hongyong</au><au>López, Rodiak Nicolai Figueroa</au><au>López-Lázaro, Heraclio Ledgar</au><au>Simsen, Jacson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>390</volume><issue>4</issue><spage>5415</spage><epage>5470</epage><pages>5415-5470</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>In this paper, we develop an extension of the theoretical framework of multi-valued dynamical systems for families of time-dependent phase spaces, where special attention was paid to the relationship between the pullback attractors of homeomorphically equivalent dynamical systems. We apply this theory to show that the 3D Navier–Stokes equations defined on a non-cylindrical domain, satisfying certain hypotheses about the energy inequality, generate an upper-semicontinuous multi-valued dynamical system, and then, by means of the energy method, we show that this system is asymptotically compact and has a pullback attractor on a tempered universe. Using current techniques we also prove that pullback attractors associated with the single-valued dynamical systems that satisfy the smoothing property have finite fractal dimension. This latter result is applied to show that the 2D Navier–Stokes equations on a non-cylindrical domain has a pullback attractor with finite fractal dimension.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-024-02908-7</doi><tpages>56</tpages><orcidid>https://orcid.org/0000-0003-0457-117X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2024-12, Vol.390 (4), p.5415-5470
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_3122603040
source Springer Nature
subjects Attractors (mathematics)
Dynamical systems
Energy methods
Fluid flow
Fractal geometry
Mathematics
Mathematics and Statistics
Metric space
Navier-Stokes equations
Time dependence
title Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier–Stokes equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-valued%20dynamical%20systems%20on%20time-dependent%20metric%20spaces%20with%20applications%20to%20Navier%E2%80%93Stokes%20equations&rft.jtitle=Mathematische%20annalen&rft.au=Cui,%20Hongyong&rft.date=2024-12-01&rft.volume=390&rft.issue=4&rft.spage=5415&rft.epage=5470&rft.pages=5415-5470&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-024-02908-7&rft_dat=%3Cproquest_cross%3E3122603040%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-14ce939b58e119dee6230c23710b26b73d13dfbbb691d697eaf1f86fee1cd7833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122603040&rft_id=info:pmid/&rfr_iscdi=true