Loading…

Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries

Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase t...

Full description

Saved in:
Bibliographic Details
Published in:Science China materials 2024-11, Vol.67 (11), p.3629-3636
Main Authors: Zhang, Hai-Xia, Wu, Lin-Rong, Wang, Hao-Rui, Wu, Dong-Zheng, Guo, Shao-Hui, Zhang, Ding, Duan, Xiao-Chuan, Zhang, Xian-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c198t-8694cf9234baa0b82c453c0db1baacfe05ccaa1f97072504181cec26199a9d823
container_end_page 3636
container_issue 11
container_start_page 3629
container_title Science China materials
container_volume 67
creator Zhang, Hai-Xia
Wu, Lin-Rong
Wang, Hao-Rui
Wu, Dong-Zheng
Guo, Shao-Hui
Zhang, Ding
Duan, Xiao-Chuan
Zhang, Xian-Ming
description Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na 0.75 Li 0.25−2/3 x Cu x Mn 0.75−1/3 x O 2 via Cu doping. Ex-situ XPS demonstrates that Cu doping reduces the amount of Mn 3+ that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, in-situ XRD results verify that the Na 0.75 Li 0.19 Cu 0.09 Mn 0.72 O 2 maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g −1 at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg −1 . Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.
doi_str_mv 10.1007/s40843-024-3081-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3122603935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3122603935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-8694cf9234baa0b82c453c0db1baacfe05ccaa1f97072504181cec26199a9d823</originalsourceid><addsrcrecordid>eNp1kF1LwzAYhYsoOOZ-gHcBr-PefLRrLqX4BUMF9TqkabplbE1NMtnEH29KBa-8SfIezjlveLLsksA1AVjMA4eSMwyUYwYlweIkm1AiBOY5kNP0BpHjktLiPJuFsAEAUuSEiHKSfb9GVdut_bLdCrnDcWU65E3jDulUOlrXIduhfq2CwdGrLthBw603Br1QHI-9QZWbP9lR0iquXWPQp1Wo2qPG9UNv6zwKrrH7HR4KaxWj8daEi-ysVdtgZr_3NHu_u32rHvDy-f6xullinf4YcVkIrltBGa-VgrqkmudMQ1OTNOvWQK61UqQVC1jQHDgpiTaaFomAEk1J2TS7Gnt77z72JkS5cXvfpZWSkYQFmGB5cpHRpb0LwZtW9t7ulD9KAnLgLEfOMnGWA2cpUoaOmZC83cr4v-b_Qz86oIEq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122603935</pqid></control><display><type>article</type><title>Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries</title><source>Springer Nature</source><creator>Zhang, Hai-Xia ; Wu, Lin-Rong ; Wang, Hao-Rui ; Wu, Dong-Zheng ; Guo, Shao-Hui ; Zhang, Ding ; Duan, Xiao-Chuan ; Zhang, Xian-Ming</creator><creatorcontrib>Zhang, Hai-Xia ; Wu, Lin-Rong ; Wang, Hao-Rui ; Wu, Dong-Zheng ; Guo, Shao-Hui ; Zhang, Ding ; Duan, Xiao-Chuan ; Zhang, Xian-Ming</creatorcontrib><description>Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na 0.75 Li 0.25−2/3 x Cu x Mn 0.75−1/3 x O 2 via Cu doping. Ex-situ XPS demonstrates that Cu doping reduces the amount of Mn 3+ that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, in-situ XRD results verify that the Na 0.75 Li 0.19 Cu 0.09 Mn 0.72 O 2 maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g −1 at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg −1 . Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-024-3081-9</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Batteries ; Cathodes ; Chemical properties ; Chemical reactions ; Chemistry and Materials Science ; Chemistry/Food Science ; Copper ; Doping ; Jahn-Teller effect ; Materials Science ; Nickel ; Oxidation ; Oxygen enrichment ; Phase transitions ; Redox reactions ; Sodium-ion batteries ; Solid phases</subject><ispartof>Science China materials, 2024-11, Vol.67 (11), p.3629-3636</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-8694cf9234baa0b82c453c0db1baacfe05ccaa1f97072504181cec26199a9d823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Hai-Xia</creatorcontrib><creatorcontrib>Wu, Lin-Rong</creatorcontrib><creatorcontrib>Wang, Hao-Rui</creatorcontrib><creatorcontrib>Wu, Dong-Zheng</creatorcontrib><creatorcontrib>Guo, Shao-Hui</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Duan, Xiao-Chuan</creatorcontrib><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><title>Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na 0.75 Li 0.25−2/3 x Cu x Mn 0.75−1/3 x O 2 via Cu doping. Ex-situ XPS demonstrates that Cu doping reduces the amount of Mn 3+ that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, in-situ XRD results verify that the Na 0.75 Li 0.19 Cu 0.09 Mn 0.72 O 2 maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g −1 at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg −1 . Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemical properties</subject><subject>Chemical reactions</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Copper</subject><subject>Doping</subject><subject>Jahn-Teller effect</subject><subject>Materials Science</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen enrichment</subject><subject>Phase transitions</subject><subject>Redox reactions</subject><subject>Sodium-ion batteries</subject><subject>Solid phases</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAYhYsoOOZ-gHcBr-PefLRrLqX4BUMF9TqkabplbE1NMtnEH29KBa-8SfIezjlveLLsksA1AVjMA4eSMwyUYwYlweIkm1AiBOY5kNP0BpHjktLiPJuFsAEAUuSEiHKSfb9GVdut_bLdCrnDcWU65E3jDulUOlrXIduhfq2CwdGrLthBw603Br1QHI-9QZWbP9lR0iquXWPQp1Wo2qPG9UNv6zwKrrH7HR4KaxWj8daEi-ysVdtgZr_3NHu_u32rHvDy-f6xullinf4YcVkIrltBGa-VgrqkmudMQ1OTNOvWQK61UqQVC1jQHDgpiTaaFomAEk1J2TS7Gnt77z72JkS5cXvfpZWSkYQFmGB5cpHRpb0LwZtW9t7ulD9KAnLgLEfOMnGWA2cpUoaOmZC83cr4v-b_Qz86oIEq</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhang, Hai-Xia</creator><creator>Wu, Lin-Rong</creator><creator>Wang, Hao-Rui</creator><creator>Wu, Dong-Zheng</creator><creator>Guo, Shao-Hui</creator><creator>Zhang, Ding</creator><creator>Duan, Xiao-Chuan</creator><creator>Zhang, Xian-Ming</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241101</creationdate><title>Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries</title><author>Zhang, Hai-Xia ; Wu, Lin-Rong ; Wang, Hao-Rui ; Wu, Dong-Zheng ; Guo, Shao-Hui ; Zhang, Ding ; Duan, Xiao-Chuan ; Zhang, Xian-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-8694cf9234baa0b82c453c0db1baacfe05ccaa1f97072504181cec26199a9d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemical properties</topic><topic>Chemical reactions</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Copper</topic><topic>Doping</topic><topic>Jahn-Teller effect</topic><topic>Materials Science</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen enrichment</topic><topic>Phase transitions</topic><topic>Redox reactions</topic><topic>Sodium-ion batteries</topic><topic>Solid phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hai-Xia</creatorcontrib><creatorcontrib>Wu, Lin-Rong</creatorcontrib><creatorcontrib>Wang, Hao-Rui</creatorcontrib><creatorcontrib>Wu, Dong-Zheng</creatorcontrib><creatorcontrib>Guo, Shao-Hui</creatorcontrib><creatorcontrib>Zhang, Ding</creatorcontrib><creatorcontrib>Duan, Xiao-Chuan</creatorcontrib><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hai-Xia</au><au>Wu, Lin-Rong</au><au>Wang, Hao-Rui</au><au>Wu, Dong-Zheng</au><au>Guo, Shao-Hui</au><au>Zhang, Ding</au><au>Duan, Xiao-Chuan</au><au>Zhang, Xian-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>67</volume><issue>11</issue><spage>3629</spage><epage>3636</epage><pages>3629-3636</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na 0.75 Li 0.25−2/3 x Cu x Mn 0.75−1/3 x O 2 via Cu doping. Ex-situ XPS demonstrates that Cu doping reduces the amount of Mn 3+ that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, in-situ XRD results verify that the Na 0.75 Li 0.19 Cu 0.09 Mn 0.72 O 2 maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g −1 at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg −1 . Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-024-3081-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2024-11, Vol.67 (11), p.3629-3636
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_3122603935
source Springer Nature
subjects Batteries
Cathodes
Chemical properties
Chemical reactions
Chemistry and Materials Science
Chemistry/Food Science
Copper
Doping
Jahn-Teller effect
Materials Science
Nickel
Oxidation
Oxygen enrichment
Phase transitions
Redox reactions
Sodium-ion batteries
Solid phases
title Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilizing%20oxygen%20redox%20reaction%20in%20phase-transition-free%20P2-type%20Co/Ni-free%20cathode%20via%20Cu%20doping%20for%20sodium-ion%20batteries&rft.jtitle=Science%20China%20materials&rft.au=Zhang,%20Hai-Xia&rft.date=2024-11-01&rft.volume=67&rft.issue=11&rft.spage=3629&rft.epage=3636&rft.pages=3629-3636&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-024-3081-9&rft_dat=%3Cproquest_cross%3E3122603935%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-8694cf9234baa0b82c453c0db1baacfe05ccaa1f97072504181cec26199a9d823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3122603935&rft_id=info:pmid/&rfr_iscdi=true