Loading…
GPT-4o reads the mind in the eyes
Large Language Models (LLMs) are capable of reproducing human-like inferences, including inferences about emotions and mental states, from text. Whether this capability extends beyond text to other modalities remains unclear. Humans possess a sophisticated ability to read the mind in the eyes of oth...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large Language Models (LLMs) are capable of reproducing human-like inferences, including inferences about emotions and mental states, from text. Whether this capability extends beyond text to other modalities remains unclear. Humans possess a sophisticated ability to read the mind in the eyes of other people. Here we tested whether this ability is also present in GPT-4o, a multimodal LLM. Using two versions of a widely used theory of mind test, the Reading the Mind in Eyes Test and the Multiracial Reading the Mind in the Eyes Test, we found that GPT-4o outperformed humans in interpreting mental states from upright faces but underperformed humans when faces were inverted. While humans in our sample showed no difference between White and Non-white faces, GPT-4o's accuracy was higher for White than for Non-white faces. GPT-4o's errors were not random but revealed a highly consistent, yet incorrect, processing of mental-state information across trials, with an orientation-dependent error structure that qualitatively differed from that of humans for inverted faces but not for upright faces. These findings highlight how advanced mental state inference abilities and human-like face processing signatures, such as inversion effects, coexist in GPT-4o alongside substantial differences in information processing compared to humans. |
---|---|
ISSN: | 2331-8422 |