Loading…

Carbon nanotube-clamped metal atomic chain

Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices....

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-05, Vol.107 (20), p.9055-9059
Main Authors: Tang, Dai-Ming, Yin, Li-Chang, Li, Feng, Liu, Chang, Yu, Wan-Jing, Hou, Peng-Xiang, Wu, Bo, Lee, Young-Hee, Ma, Xiu-Liang, Cheng, Hui-Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63
cites cdi_FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63
container_end_page 9059
container_issue 20
container_start_page 9055
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Tang, Dai-Ming
Yin, Li-Chang
Li, Feng
Liu, Chang
Yu, Wan-Jing
Hou, Peng-Xiang
Wu, Bo
Lee, Young-Hee
Ma, Xiu-Liang
Cheng, Hui-Ming
description Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed.
doi_str_mv 10.1073/pnas.0914970107
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_312317227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25681545</jstor_id><sourcerecordid>25681545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63</originalsourceid><addsrcrecordid>eNpVkE1rGzEQhkVJqF0n557amB4Dm4w-ZiVdAsU0HxDIoc1ZaLVae4135Ui7hfz7ytiNk9OgmWceDS8hXylcUZD8etvbdAWaCi0hNz6RKc2vohQaTsgUgMlCCSYm5EtKawDQqOAzmTAQTErBp-RyYWMV-nlv-zCMlS_cxnZbX887P9jN3A6ha93crWzbn5HTxm6SPz_UGXm-_fVncV88Pt09LH4-Fg4RhwJ9BZVGAUKXdVMLirxW3FneOAslRaw5UuFd02Ata-cplHmqaaMQalaVfEZu9t7tWHU-E_0Q7cZsY9vZ-GqCbc3HSd-uzDL8NUwpDeVO8OMgiOFl9Gkw6zDGPt9sOGWcSsZkhq73kIshpeibtw8omF22ZpetOWabN76_v-uN_x9mBi4OwG7zqJMZMRoQM_FtT6zTEOLRgKWiKPBoaGwwdhnbZJ5_M6AcqBICQfF_Y3KR9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>312317227</pqid></control><display><type>article</type><title>Carbon nanotube-clamped metal atomic chain</title><source>PMC (PubMed Central)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Tang, Dai-Ming ; Yin, Li-Chang ; Li, Feng ; Liu, Chang ; Yu, Wan-Jing ; Hou, Peng-Xiang ; Wu, Bo ; Lee, Young-Hee ; Ma, Xiu-Liang ; Cheng, Hui-Ming</creator><creatorcontrib>Tang, Dai-Ming ; Yin, Li-Chang ; Li, Feng ; Liu, Chang ; Yu, Wan-Jing ; Hou, Peng-Xiang ; Wu, Bo ; Lee, Young-Hee ; Ma, Xiu-Liang ; Cheng, Hui-Ming</creatorcontrib><description>Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914970107</identifier><identifier>PMID: 20427743</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Anisotropy ; Annealing ; Atoms ; Carbon ; Carbon nanotubes ; Chemical bonds ; Electric Conductivity ; Electric current ; Electrodes ; Electron beams ; Electronic structure ; Energy ; Metals - chemistry ; Nanorods ; Nanotechnology - instrumentation ; Nanotubes ; Nanotubes, Carbon - chemistry ; Nanowires ; Physical Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (20), p.9055-9059</ispartof><rights>Copyright National Academy of Sciences May 18, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63</citedby><cites>FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25681545$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25681545$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20427743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Dai-Ming</creatorcontrib><creatorcontrib>Yin, Li-Chang</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Yu, Wan-Jing</creatorcontrib><creatorcontrib>Hou, Peng-Xiang</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Lee, Young-Hee</creatorcontrib><creatorcontrib>Ma, Xiu-Liang</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><title>Carbon nanotube-clamped metal atomic chain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed.</description><subject>Anisotropy</subject><subject>Annealing</subject><subject>Atoms</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical bonds</subject><subject>Electric Conductivity</subject><subject>Electric current</subject><subject>Electrodes</subject><subject>Electron beams</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Metals - chemistry</subject><subject>Nanorods</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanowires</subject><subject>Physical Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpVkE1rGzEQhkVJqF0n557amB4Dm4w-ZiVdAsU0HxDIoc1ZaLVae4135Ui7hfz7ytiNk9OgmWceDS8hXylcUZD8etvbdAWaCi0hNz6RKc2vohQaTsgUgMlCCSYm5EtKawDQqOAzmTAQTErBp-RyYWMV-nlv-zCMlS_cxnZbX887P9jN3A6ha93crWzbn5HTxm6SPz_UGXm-_fVncV88Pt09LH4-Fg4RhwJ9BZVGAUKXdVMLirxW3FneOAslRaw5UuFd02Ata-cplHmqaaMQalaVfEZu9t7tWHU-E_0Q7cZsY9vZ-GqCbc3HSd-uzDL8NUwpDeVO8OMgiOFl9Gkw6zDGPt9sOGWcSsZkhq73kIshpeibtw8omF22ZpetOWabN76_v-uN_x9mBi4OwG7zqJMZMRoQM_FtT6zTEOLRgKWiKPBoaGwwdhnbZJ5_M6AcqBICQfF_Y3KR9Q</recordid><startdate>20100518</startdate><enddate>20100518</enddate><creator>Tang, Dai-Ming</creator><creator>Yin, Li-Chang</creator><creator>Li, Feng</creator><creator>Liu, Chang</creator><creator>Yu, Wan-Jing</creator><creator>Hou, Peng-Xiang</creator><creator>Wu, Bo</creator><creator>Lee, Young-Hee</creator><creator>Ma, Xiu-Liang</creator><creator>Cheng, Hui-Ming</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20100518</creationdate><title>Carbon nanotube-clamped metal atomic chain</title><author>Tang, Dai-Ming ; Yin, Li-Chang ; Li, Feng ; Liu, Chang ; Yu, Wan-Jing ; Hou, Peng-Xiang ; Wu, Bo ; Lee, Young-Hee ; Ma, Xiu-Liang ; Cheng, Hui-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anisotropy</topic><topic>Annealing</topic><topic>Atoms</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical bonds</topic><topic>Electric Conductivity</topic><topic>Electric current</topic><topic>Electrodes</topic><topic>Electron beams</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Metals - chemistry</topic><topic>Nanorods</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanowires</topic><topic>Physical Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Dai-Ming</creatorcontrib><creatorcontrib>Yin, Li-Chang</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Yu, Wan-Jing</creatorcontrib><creatorcontrib>Hou, Peng-Xiang</creatorcontrib><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Lee, Young-Hee</creatorcontrib><creatorcontrib>Ma, Xiu-Liang</creatorcontrib><creatorcontrib>Cheng, Hui-Ming</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Dai-Ming</au><au>Yin, Li-Chang</au><au>Li, Feng</au><au>Liu, Chang</au><au>Yu, Wan-Jing</au><au>Hou, Peng-Xiang</au><au>Wu, Bo</au><au>Lee, Young-Hee</au><au>Ma, Xiu-Liang</au><au>Cheng, Hui-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon nanotube-clamped metal atomic chain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-05-18</date><risdate>2010</risdate><volume>107</volume><issue>20</issue><spage>9055</spage><epage>9059</epage><pages>9055-9059</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20427743</pmid><doi>10.1073/pnas.0914970107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-05, Vol.107 (20), p.9055-9059
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_312317227
source PMC (PubMed Central); JSTOR Archival Journals and Primary Sources Collection
subjects Anisotropy
Annealing
Atoms
Carbon
Carbon nanotubes
Chemical bonds
Electric Conductivity
Electric current
Electrodes
Electron beams
Electronic structure
Energy
Metals - chemistry
Nanorods
Nanotechnology - instrumentation
Nanotubes
Nanotubes, Carbon - chemistry
Nanowires
Physical Sciences
title Carbon nanotube-clamped metal atomic chain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20nanotube-clamped%20metal%20atomic%20chain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tang,%20Dai-Ming&rft.date=2010-05-18&rft.volume=107&rft.issue=20&rft.spage=9055&rft.epage=9059&rft.pages=9055-9059&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914970107&rft_dat=%3Cjstor_proqu%3E25681545%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-5eb0b9540496dfd4153d83ca3fca06155d3514ecff5d7dce1063ca91f850d2b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=312317227&rft_id=info:pmid/20427743&rft_jstor_id=25681545&rfr_iscdi=true