Loading…

Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID‐19 Pandemic

The COVID‐19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes...

Full description

Saved in:
Bibliographic Details
Published in:Indoor air 2024-01, Vol.2024 (1)
Main Authors: Llanos-Jiménez, Jesús, Suárez, Rafael, Alonso, Alicia, Sendra, Juan José
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The COVID‐19 pandemic has prompted renewed interest in indoor air quality (IAQ). Poor ventilation habits, energy obsolescence, and the lack of cooling equipment in schools, combined with increasing temperatures due to climate change, are leading to situations of thermal stress in classrooms. Changes in school operation, following the COVID pandemic, have made it necessary to establish an accurate understanding of the current situation. This research work presents an assessment of winter and summer IAQ and thermal comfort (TC) for a sample of 7 archetypal secondary schools in 5 Mediterranean climate variants in southern Spain in a postpandemic situation. IAQ was assessed through CO 2 , PM2.5, PM10, and CH 2 O, while static and adaptive models were used in the case of TC. Surveys were also used to assess both of these. The main novelty is the use of IAPI (indoor air pollution index) and IDI (indoor dissatisfaction index) objective global dimensionless indices to optimize the joint assessment of both variables. Poor objective IAQ results, especially for CO 2 and PM2.5, were obtained for both seasons and all climate variants. Global IAPI is between 6.2 and 8.1, with an index of 10 considered unacceptable, while time percentages exceeding established limits are more variable in winter, ranging from 7% to 31.9%, than in summer, ranging from 14.3% to 20.9%. TC objective results varied, and the summer percentage of hours outside the comfort bands reached 40%–47% due to excess heat in the hottest regions. This discomfort was reported by 58.3% of users.
ISSN:0905-6947
1600-0668
DOI:10.1155/2024/2456666