Loading…
Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer
Energy harvesting technology, as an emerging energy technology, has contributed outstandingly to the application of online monitoring sensors in power systems. The accurate parameter identification of the harvesters is crucial for their power supply applications. This work aims to investigate the pa...
Saved in:
Published in: | International journal of energy research 2024-01, Vol.2024 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c188t-2ff81068448b9896f3481d15ef84f93ea7a2ad0348ff0cfc019a523d0dc832e13 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | International journal of energy research |
container_volume | 2024 |
creator | Xiang, Shiyezi Du, Lin Yu, Huizong Xiao, Jianhong Chen, Weigen Wan, Fu |
description | Energy harvesting technology, as an emerging energy technology, has contributed outstandingly to the application of online monitoring sensors in power systems. The accurate parameter identification of the harvesters is crucial for their power supply applications. This work aims to investigate the parameter identification of harvesters with complex equivalent circuit models, here taking a current transformer as an example. However, previous studies focused on optimizing algorithms rather than data sources. This paper demonstrates a vector impedance quantum genetic algorithm (QGA) parameter identification method to identify the amplitude and phase information of the impedance responses. By comparing the results of the proposed method with the genetic algorithm and PSO based on impedance responses and QGA based on load resistance responses, it is proved that the proposed vector impedance QGA identification method is optimal in terms of accuracy, speed, and robustness. The root mean square errors of the output voltage and the phase difference with the primary current for the proposed method are 5.884 × 10 −5 V and 4.473 × 10 −4 ms. Moreover, the practical applicability of this method is validated, demonstrating its effectiveness in real‐life and industrial settings. The proposed identification method in this paper changes the source data so that the sample data are small in volume and extensive in information, which enables faster and more accurate parameter identification. This study provides a new idea for parameter identification researches. |
doi_str_mv | 10.1155/2024/6682333 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123583655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123583655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-2ff81068448b9896f3481d15ef84f93ea7a2ad0348ff0cfc019a523d0dc832e13</originalsourceid><addsrcrecordid>eNotkF9PwjAUxRujiYi--QGa-Oqkf7bR-UYIAgkJGkF5W2p3iyOsnW1nwofwO1sCTzc599x7cn4I3VPyRGmWDRhh6SDPBeOcX6AeJUWRUJpuLlGP8JwnBRlurtGN9ztC4o4Oe-hv2Ya6kXv8Kp1sIIDD8wpMqHWtZKitwVbjiQG3PeCZdL_go8Xjta_NFn-ACjYeNC1U0ijAb500oWvwFAyEWuHRfmtdHb6bZzzCY-kBv4euOuDPqOFx51xMwisnjdfWNeBu0ZWWew9359lH65fJajxLFsvpfDxaJIoKERKmtaAkF2kqvgpR5JqnglY0Ay1SXXCQQ8lkRaKqNVFaEVrIjPGKVEpwBpT30cPpb-vsTxc7lTvbORMjS04ZzwTPsyy6Hk8u5az3DnTZusjKHUpKyiPw8gi8PAPn_wJXdGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123583655</pqid></control><display><type>article</type><title>Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Xiang, Shiyezi ; Du, Lin ; Yu, Huizong ; Xiao, Jianhong ; Chen, Weigen ; Wan, Fu</creator><contributor>Mohamed Louzazni</contributor><creatorcontrib>Xiang, Shiyezi ; Du, Lin ; Yu, Huizong ; Xiao, Jianhong ; Chen, Weigen ; Wan, Fu ; Mohamed Louzazni</creatorcontrib><description>Energy harvesting technology, as an emerging energy technology, has contributed outstandingly to the application of online monitoring sensors in power systems. The accurate parameter identification of the harvesters is crucial for their power supply applications. This work aims to investigate the parameter identification of harvesters with complex equivalent circuit models, here taking a current transformer as an example. However, previous studies focused on optimizing algorithms rather than data sources. This paper demonstrates a vector impedance quantum genetic algorithm (QGA) parameter identification method to identify the amplitude and phase information of the impedance responses. By comparing the results of the proposed method with the genetic algorithm and PSO based on impedance responses and QGA based on load resistance responses, it is proved that the proposed vector impedance QGA identification method is optimal in terms of accuracy, speed, and robustness. The root mean square errors of the output voltage and the phase difference with the primary current for the proposed method are 5.884 × 10 −5 V and 4.473 × 10 −4 ms. Moreover, the practical applicability of this method is validated, demonstrating its effectiveness in real‐life and industrial settings. The proposed identification method in this paper changes the source data so that the sample data are small in volume and extensive in information, which enables faster and more accurate parameter identification. This study provides a new idea for parameter identification researches.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2024/6682333</identifier><language>eng</language><publisher>Bognor Regis: Hindawi Limited</publisher><subject>Accuracy ; Algorithms ; Energy ; Energy harvesting ; Energy technology ; Equivalent circuits ; Genetic algorithms ; Identification methods ; Impedance ; Load resistance ; Methods ; Optimization ; Optimization algorithms ; Parameter estimation ; Parameter identification ; Performance evaluation ; Power supply ; Transformers</subject><ispartof>International journal of energy research, 2024-01, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Shiyezi Xiang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-2ff81068448b9896f3481d15ef84f93ea7a2ad0348ff0cfc019a523d0dc832e13</cites><orcidid>0000-0003-4317-3844 ; 0000-0001-6559-4098 ; 0000-0002-4662-2097 ; 0000-0002-4911-8611 ; 0000-0001-9750-1888 ; 0000-0001-9732-739X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3123583655/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3123583655?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Mohamed Louzazni</contributor><creatorcontrib>Xiang, Shiyezi</creatorcontrib><creatorcontrib>Du, Lin</creatorcontrib><creatorcontrib>Yu, Huizong</creatorcontrib><creatorcontrib>Xiao, Jianhong</creatorcontrib><creatorcontrib>Chen, Weigen</creatorcontrib><creatorcontrib>Wan, Fu</creatorcontrib><title>Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer</title><title>International journal of energy research</title><description>Energy harvesting technology, as an emerging energy technology, has contributed outstandingly to the application of online monitoring sensors in power systems. The accurate parameter identification of the harvesters is crucial for their power supply applications. This work aims to investigate the parameter identification of harvesters with complex equivalent circuit models, here taking a current transformer as an example. However, previous studies focused on optimizing algorithms rather than data sources. This paper demonstrates a vector impedance quantum genetic algorithm (QGA) parameter identification method to identify the amplitude and phase information of the impedance responses. By comparing the results of the proposed method with the genetic algorithm and PSO based on impedance responses and QGA based on load resistance responses, it is proved that the proposed vector impedance QGA identification method is optimal in terms of accuracy, speed, and robustness. The root mean square errors of the output voltage and the phase difference with the primary current for the proposed method are 5.884 × 10 −5 V and 4.473 × 10 −4 ms. Moreover, the practical applicability of this method is validated, demonstrating its effectiveness in real‐life and industrial settings. The proposed identification method in this paper changes the source data so that the sample data are small in volume and extensive in information, which enables faster and more accurate parameter identification. This study provides a new idea for parameter identification researches.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy technology</subject><subject>Equivalent circuits</subject><subject>Genetic algorithms</subject><subject>Identification methods</subject><subject>Impedance</subject><subject>Load resistance</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Performance evaluation</subject><subject>Power supply</subject><subject>Transformers</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkF9PwjAUxRujiYi--QGa-Oqkf7bR-UYIAgkJGkF5W2p3iyOsnW1nwofwO1sCTzc599x7cn4I3VPyRGmWDRhh6SDPBeOcX6AeJUWRUJpuLlGP8JwnBRlurtGN9ztC4o4Oe-hv2Ya6kXv8Kp1sIIDD8wpMqHWtZKitwVbjiQG3PeCZdL_go8Xjta_NFn-ACjYeNC1U0ijAb500oWvwFAyEWuHRfmtdHb6bZzzCY-kBv4euOuDPqOFx51xMwisnjdfWNeBu0ZWWew9359lH65fJajxLFsvpfDxaJIoKERKmtaAkF2kqvgpR5JqnglY0Ay1SXXCQQ8lkRaKqNVFaEVrIjPGKVEpwBpT30cPpb-vsTxc7lTvbORMjS04ZzwTPsyy6Hk8u5az3DnTZusjKHUpKyiPw8gi8PAPn_wJXdGE</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xiang, Shiyezi</creator><creator>Du, Lin</creator><creator>Yu, Huizong</creator><creator>Xiao, Jianhong</creator><creator>Chen, Weigen</creator><creator>Wan, Fu</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4317-3844</orcidid><orcidid>https://orcid.org/0000-0001-6559-4098</orcidid><orcidid>https://orcid.org/0000-0002-4662-2097</orcidid><orcidid>https://orcid.org/0000-0002-4911-8611</orcidid><orcidid>https://orcid.org/0000-0001-9750-1888</orcidid><orcidid>https://orcid.org/0000-0001-9732-739X</orcidid></search><sort><creationdate>20240101</creationdate><title>Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer</title><author>Xiang, Shiyezi ; Du, Lin ; Yu, Huizong ; Xiao, Jianhong ; Chen, Weigen ; Wan, Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-2ff81068448b9896f3481d15ef84f93ea7a2ad0348ff0cfc019a523d0dc832e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy technology</topic><topic>Equivalent circuits</topic><topic>Genetic algorithms</topic><topic>Identification methods</topic><topic>Impedance</topic><topic>Load resistance</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Performance evaluation</topic><topic>Power supply</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Shiyezi</creatorcontrib><creatorcontrib>Du, Lin</creatorcontrib><creatorcontrib>Yu, Huizong</creatorcontrib><creatorcontrib>Xiao, Jianhong</creatorcontrib><creatorcontrib>Chen, Weigen</creatorcontrib><creatorcontrib>Wan, Fu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Shiyezi</au><au>Du, Lin</au><au>Yu, Huizong</au><au>Xiao, Jianhong</au><au>Chen, Weigen</au><au>Wan, Fu</au><au>Mohamed Louzazni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer</atitle><jtitle>International journal of energy research</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Energy harvesting technology, as an emerging energy technology, has contributed outstandingly to the application of online monitoring sensors in power systems. The accurate parameter identification of the harvesters is crucial for their power supply applications. This work aims to investigate the parameter identification of harvesters with complex equivalent circuit models, here taking a current transformer as an example. However, previous studies focused on optimizing algorithms rather than data sources. This paper demonstrates a vector impedance quantum genetic algorithm (QGA) parameter identification method to identify the amplitude and phase information of the impedance responses. By comparing the results of the proposed method with the genetic algorithm and PSO based on impedance responses and QGA based on load resistance responses, it is proved that the proposed vector impedance QGA identification method is optimal in terms of accuracy, speed, and robustness. The root mean square errors of the output voltage and the phase difference with the primary current for the proposed method are 5.884 × 10 −5 V and 4.473 × 10 −4 ms. Moreover, the practical applicability of this method is validated, demonstrating its effectiveness in real‐life and industrial settings. The proposed identification method in this paper changes the source data so that the sample data are small in volume and extensive in information, which enables faster and more accurate parameter identification. This study provides a new idea for parameter identification researches.</abstract><cop>Bognor Regis</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/6682333</doi><orcidid>https://orcid.org/0000-0003-4317-3844</orcidid><orcidid>https://orcid.org/0000-0001-6559-4098</orcidid><orcidid>https://orcid.org/0000-0002-4662-2097</orcidid><orcidid>https://orcid.org/0000-0002-4911-8611</orcidid><orcidid>https://orcid.org/0000-0001-9750-1888</orcidid><orcidid>https://orcid.org/0000-0001-9732-739X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2024-01, Vol.2024 (1) |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_3123583655 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Accuracy Algorithms Energy Energy harvesting Energy technology Equivalent circuits Genetic algorithms Identification methods Impedance Load resistance Methods Optimization Optimization algorithms Parameter estimation Parameter identification Performance evaluation Power supply Transformers |
title | Optimal Parameter Identification of Energy Harvesters Using Vector Impedance Quantum Genetic Algorithm: A Case Study With Current Transformer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Parameter%20Identification%20of%20Energy%20Harvesters%20Using%20Vector%20Impedance%20Quantum%20Genetic%20Algorithm:%20A%20Case%20Study%20With%20Current%20Transformer&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Xiang,%20Shiyezi&rft.date=2024-01-01&rft.volume=2024&rft.issue=1&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2024/6682333&rft_dat=%3Cproquest_cross%3E3123583655%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c188t-2ff81068448b9896f3481d15ef84f93ea7a2ad0348ff0cfc019a523d0dc832e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123583655&rft_id=info:pmid/&rfr_iscdi=true |