Loading…

Structural Analysis and Electrical Property of Acid‐Treated MWCNT

ABSTRACT The electrical properties of acid‐treated CNT were investigated in terms of functional group and microstructure. A mixture of HNO3 and H2SO4 was used to acid treatment of CNT, and acid‐treated CNTs were synthesized by the mixture for 0 to 5 h. In crystal structure analysis, as acid treatmen...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2024-12, Vol.56 (12), p.851-857
Main Authors: Lee, Jaekwang, Lim, Hyunwoo, Ha, Joo‐yeon, Lee, Seungjae, Lee, Heesoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The electrical properties of acid‐treated CNT were investigated in terms of functional group and microstructure. A mixture of HNO3 and H2SO4 was used to acid treatment of CNT, and acid‐treated CNTs were synthesized by the mixture for 0 to 5 h. In crystal structure analysis, as acid treatment time was increased, the intensity of graphite diffraction peak was decreased and shifted to lower angle. It indicates a decrease in the crystallinity of CNT surface and lattice contraction by loss of carbon atoms. The distribution of oxygen on CNT surface was observed by TEM analysis confirming that functional groups and structural defects were formed. ID/IG ratio and average distance between defects (LD) were calculated using Raman spectroscopy to analyze the structural characteristics of CNT, and the greatest decrease was identified from p‐CNT to 2h‐CNT, resulting in the formation of functional groups and the changes in structural defects on CNT surface by acid treatment in the initial stage. Bonding state on CNT surface was analyzed through XPS analysis, and functional groups such as CO and COH were confirmed in acid‐treated CNT. Sheet resistance was measured to analyze the electrical properties of CNT, and 3h‐CNT showed the lowest sheet resistance at 25.28 Ω.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.7353