Loading…

Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation

Controlling gas sorption through pore engineering is indispensable in molecular recognition and separation processes. The challenge lies in developing high‐efficiency adsorbents for C3H6/C3H8 separation, specifically enhancing the affinity toward C3H6 for high selectivity while maintaining a large g...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-11, Vol.34 (45), p.n/a
Main Authors: Liu, Puxu, Li, Jianhui, Yan, Furong, Lian, Xin, Xu, Jian, Chen, Yang, Liu, Yutao, Shi, Qi, Cui, Xili, Sun, Lin‐Bing, Li, Jinping, Li, Libo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced functional materials
container_volume 34
creator Liu, Puxu
Li, Jianhui
Yan, Furong
Lian, Xin
Xu, Jian
Chen, Yang
Liu, Yutao
Shi, Qi
Cui, Xili
Sun, Lin‐Bing
Li, Jinping
Li, Libo
description Controlling gas sorption through pore engineering is indispensable in molecular recognition and separation processes. The challenge lies in developing high‐efficiency adsorbents for C3H6/C3H8 separation, specifically enhancing the affinity toward C3H6 for high selectivity while maintaining a large gas uptake to obtain high separation efficiency. Herein, this problem can be addressed by controlling host‐guest interactions using Lewis basic sites modulation. A precise steric design of channel pores using an amino group as additional interacting sites enables the synergetic increase in C3H6 adsorption while suppressing the C3H8 adsorption, resulting in a quasi‐molecular‐sieving effect. Among them, TYUT‐23 has a perfect pore size that fits minimum cross‐sectional dimensions of C3H6, affording exceptional binding affinity for the C3H6 molecule. It adsorbs a large amount of C3H6 (2.5 mmol g−1) and concurrently exhibits both remarkably high IAST selectivity (71) under ambient conditions. Equimolar C3H6/C3H8 breakthrough experiments also prove the prominent separation performance of TYUT‐23 for the production of high‐purity C3H6. The C3H6 adsorption/separation mechanism has been investigated using C3H6‐loaded single‐crystal structure analysis. This material demonstrates the potential of optimizing host‐C3H6 interactions using Lewis basic site modulation in industrial separations. By controllably immobilizing Lewis basic amino‐sites, a quasi‐molecular‐sieving MOF (TYUT‐23) with ultra‐strong binding affinity for C3H6 is developed. Importantly, modulating amino sites not only fulfills precisely engineering micropores but also enables the electrostatic repulsion of C3H8, thereby maximizing separation efficiency. This approach presents a promising design principle for porous materials with high performance for challenging recognition and separation systems.
doi_str_mv 10.1002/adfm.202406664
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3123690008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123690008</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1634-4004c13a4df8185b0390091e395e53017da71fb02044b474168136de01fb5dc53</originalsourceid><addsrcrecordid>eNo9UE1PwkAU3BhNRPTqeRPPhbfd7bY9IoKQQIhBE2_Ntt3iYtut21aiJ-IvMPEf8ktcxHB5H5N5M3mD0DWBHgFw-yLNip4LLgPOOTtBHcIJdyi4welxJs_n6KKu1wDE9ynroK9pUehY5epTNEqXWGd4JjeqxreiVgleqkbWWJWNxgI_tBbbbb_nOpdJmwtj56WS76pc4blsRL7b_izMSpT2cGxEITfavOJMGzwqX0SZyBQP6YT3bQnwUlbC_HleorNM5LW8-u9d9DQePQ4nzmxxPx0OZk5FOGUOA2AJoYKlWUACLwYaAoRE0tCTnv3MT4VPshhcYCxmPiM8IJSnEizopYlHu-jmoFsZ_dbKuonWujWltYwocSm3chBYVnhgbVQuP6LKqEKYj4hAtA852occHUOOBnfj-XGjv6BvdJY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123690008</pqid></control><display><type>article</type><title>Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Liu, Puxu ; Li, Jianhui ; Yan, Furong ; Lian, Xin ; Xu, Jian ; Chen, Yang ; Liu, Yutao ; Shi, Qi ; Cui, Xili ; Sun, Lin‐Bing ; Li, Jinping ; Li, Libo</creator><creatorcontrib>Liu, Puxu ; Li, Jianhui ; Yan, Furong ; Lian, Xin ; Xu, Jian ; Chen, Yang ; Liu, Yutao ; Shi, Qi ; Cui, Xili ; Sun, Lin‐Bing ; Li, Jinping ; Li, Libo</creatorcontrib><description>Controlling gas sorption through pore engineering is indispensable in molecular recognition and separation processes. The challenge lies in developing high‐efficiency adsorbents for C3H6/C3H8 separation, specifically enhancing the affinity toward C3H6 for high selectivity while maintaining a large gas uptake to obtain high separation efficiency. Herein, this problem can be addressed by controlling host‐guest interactions using Lewis basic sites modulation. A precise steric design of channel pores using an amino group as additional interacting sites enables the synergetic increase in C3H6 adsorption while suppressing the C3H8 adsorption, resulting in a quasi‐molecular‐sieving effect. Among them, TYUT‐23 has a perfect pore size that fits minimum cross‐sectional dimensions of C3H6, affording exceptional binding affinity for the C3H6 molecule. It adsorbs a large amount of C3H6 (2.5 mmol g−1) and concurrently exhibits both remarkably high IAST selectivity (71) under ambient conditions. Equimolar C3H6/C3H8 breakthrough experiments also prove the prominent separation performance of TYUT‐23 for the production of high‐purity C3H6. The C3H6 adsorption/separation mechanism has been investigated using C3H6‐loaded single‐crystal structure analysis. This material demonstrates the potential of optimizing host‐C3H6 interactions using Lewis basic site modulation in industrial separations. By controllably immobilizing Lewis basic amino‐sites, a quasi‐molecular‐sieving MOF (TYUT‐23) with ultra‐strong binding affinity for C3H6 is developed. Importantly, modulating amino sites not only fulfills precisely engineering micropores but also enables the electrostatic repulsion of C3H8, thereby maximizing separation efficiency. This approach presents a promising design principle for porous materials with high performance for challenging recognition and separation systems.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202406664</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Affinity ; C3H6/C3H8 separation ; Crystal structure ; enhanced separation efficiency ; Lewis basic sites immobilization ; Metal-organic frameworks ; Modulation ; Pore size ; porous materials ; Separation ; single crystal diffraction ; Structural analysis</subject><ispartof>Advanced functional materials, 2024-11, Vol.34 (45), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7147-9838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Puxu</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yan, Furong</creatorcontrib><creatorcontrib>Lian, Xin</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Yutao</creatorcontrib><creatorcontrib>Shi, Qi</creatorcontrib><creatorcontrib>Cui, Xili</creatorcontrib><creatorcontrib>Sun, Lin‐Bing</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Li, Libo</creatorcontrib><title>Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation</title><title>Advanced functional materials</title><description>Controlling gas sorption through pore engineering is indispensable in molecular recognition and separation processes. The challenge lies in developing high‐efficiency adsorbents for C3H6/C3H8 separation, specifically enhancing the affinity toward C3H6 for high selectivity while maintaining a large gas uptake to obtain high separation efficiency. Herein, this problem can be addressed by controlling host‐guest interactions using Lewis basic sites modulation. A precise steric design of channel pores using an amino group as additional interacting sites enables the synergetic increase in C3H6 adsorption while suppressing the C3H8 adsorption, resulting in a quasi‐molecular‐sieving effect. Among them, TYUT‐23 has a perfect pore size that fits minimum cross‐sectional dimensions of C3H6, affording exceptional binding affinity for the C3H6 molecule. It adsorbs a large amount of C3H6 (2.5 mmol g−1) and concurrently exhibits both remarkably high IAST selectivity (71) under ambient conditions. Equimolar C3H6/C3H8 breakthrough experiments also prove the prominent separation performance of TYUT‐23 for the production of high‐purity C3H6. The C3H6 adsorption/separation mechanism has been investigated using C3H6‐loaded single‐crystal structure analysis. This material demonstrates the potential of optimizing host‐C3H6 interactions using Lewis basic site modulation in industrial separations. By controllably immobilizing Lewis basic amino‐sites, a quasi‐molecular‐sieving MOF (TYUT‐23) with ultra‐strong binding affinity for C3H6 is developed. Importantly, modulating amino sites not only fulfills precisely engineering micropores but also enables the electrostatic repulsion of C3H8, thereby maximizing separation efficiency. This approach presents a promising design principle for porous materials with high performance for challenging recognition and separation systems.</description><subject>Adsorption</subject><subject>Affinity</subject><subject>C3H6/C3H8 separation</subject><subject>Crystal structure</subject><subject>enhanced separation efficiency</subject><subject>Lewis basic sites immobilization</subject><subject>Metal-organic frameworks</subject><subject>Modulation</subject><subject>Pore size</subject><subject>porous materials</subject><subject>Separation</subject><subject>single crystal diffraction</subject><subject>Structural analysis</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UE1PwkAU3BhNRPTqeRPPhbfd7bY9IoKQQIhBE2_Ntt3iYtut21aiJ-IvMPEf8ktcxHB5H5N5M3mD0DWBHgFw-yLNip4LLgPOOTtBHcIJdyi4welxJs_n6KKu1wDE9ynroK9pUehY5epTNEqXWGd4JjeqxreiVgleqkbWWJWNxgI_tBbbbb_nOpdJmwtj56WS76pc4blsRL7b_izMSpT2cGxEITfavOJMGzwqX0SZyBQP6YT3bQnwUlbC_HleorNM5LW8-u9d9DQePQ4nzmxxPx0OZk5FOGUOA2AJoYKlWUACLwYaAoRE0tCTnv3MT4VPshhcYCxmPiM8IJSnEizopYlHu-jmoFsZ_dbKuonWujWltYwocSm3chBYVnhgbVQuP6LKqEKYj4hAtA852occHUOOBnfj-XGjv6BvdJY</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Liu, Puxu</creator><creator>Li, Jianhui</creator><creator>Yan, Furong</creator><creator>Lian, Xin</creator><creator>Xu, Jian</creator><creator>Chen, Yang</creator><creator>Liu, Yutao</creator><creator>Shi, Qi</creator><creator>Cui, Xili</creator><creator>Sun, Lin‐Bing</creator><creator>Li, Jinping</creator><creator>Li, Libo</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7147-9838</orcidid></search><sort><creationdate>20241101</creationdate><title>Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation</title><author>Liu, Puxu ; Li, Jianhui ; Yan, Furong ; Lian, Xin ; Xu, Jian ; Chen, Yang ; Liu, Yutao ; Shi, Qi ; Cui, Xili ; Sun, Lin‐Bing ; Li, Jinping ; Li, Libo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1634-4004c13a4df8185b0390091e395e53017da71fb02044b474168136de01fb5dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Affinity</topic><topic>C3H6/C3H8 separation</topic><topic>Crystal structure</topic><topic>enhanced separation efficiency</topic><topic>Lewis basic sites immobilization</topic><topic>Metal-organic frameworks</topic><topic>Modulation</topic><topic>Pore size</topic><topic>porous materials</topic><topic>Separation</topic><topic>single crystal diffraction</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Puxu</creatorcontrib><creatorcontrib>Li, Jianhui</creatorcontrib><creatorcontrib>Yan, Furong</creatorcontrib><creatorcontrib>Lian, Xin</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Yutao</creatorcontrib><creatorcontrib>Shi, Qi</creatorcontrib><creatorcontrib>Cui, Xili</creatorcontrib><creatorcontrib>Sun, Lin‐Bing</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Li, Libo</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Puxu</au><au>Li, Jianhui</au><au>Yan, Furong</au><au>Lian, Xin</au><au>Xu, Jian</au><au>Chen, Yang</au><au>Liu, Yutao</au><au>Shi, Qi</au><au>Cui, Xili</au><au>Sun, Lin‐Bing</au><au>Li, Jinping</au><au>Li, Libo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation</atitle><jtitle>Advanced functional materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>34</volume><issue>45</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Controlling gas sorption through pore engineering is indispensable in molecular recognition and separation processes. The challenge lies in developing high‐efficiency adsorbents for C3H6/C3H8 separation, specifically enhancing the affinity toward C3H6 for high selectivity while maintaining a large gas uptake to obtain high separation efficiency. Herein, this problem can be addressed by controlling host‐guest interactions using Lewis basic sites modulation. A precise steric design of channel pores using an amino group as additional interacting sites enables the synergetic increase in C3H6 adsorption while suppressing the C3H8 adsorption, resulting in a quasi‐molecular‐sieving effect. Among them, TYUT‐23 has a perfect pore size that fits minimum cross‐sectional dimensions of C3H6, affording exceptional binding affinity for the C3H6 molecule. It adsorbs a large amount of C3H6 (2.5 mmol g−1) and concurrently exhibits both remarkably high IAST selectivity (71) under ambient conditions. Equimolar C3H6/C3H8 breakthrough experiments also prove the prominent separation performance of TYUT‐23 for the production of high‐purity C3H6. The C3H6 adsorption/separation mechanism has been investigated using C3H6‐loaded single‐crystal structure analysis. This material demonstrates the potential of optimizing host‐C3H6 interactions using Lewis basic site modulation in industrial separations. By controllably immobilizing Lewis basic amino‐sites, a quasi‐molecular‐sieving MOF (TYUT‐23) with ultra‐strong binding affinity for C3H6 is developed. Importantly, modulating amino sites not only fulfills precisely engineering micropores but also enables the electrostatic repulsion of C3H8, thereby maximizing separation efficiency. This approach presents a promising design principle for porous materials with high performance for challenging recognition and separation systems.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202406664</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7147-9838</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-11, Vol.34 (45), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3123690008
source Wiley-Blackwell Read & Publish Collection
subjects Adsorption
Affinity
C3H6/C3H8 separation
Crystal structure
enhanced separation efficiency
Lewis basic sites immobilization
Metal-organic frameworks
Modulation
Pore size
porous materials
Separation
single crystal diffraction
Structural analysis
title Immobilization of Lewis Basic Sites into a Quasi‐Molecular‐Sieving Metal–Organic Framework for Enhanced C3H6/C3H8 Separation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A04%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilization%20of%20Lewis%20Basic%20Sites%20into%20a%20Quasi%E2%80%90Molecular%E2%80%90Sieving%20Metal%E2%80%93Organic%20Framework%20for%20Enhanced%20C3H6/C3H8%20Separation&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Puxu&rft.date=2024-11-01&rft.volume=34&rft.issue=45&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202406664&rft_dat=%3Cproquest_wiley%3E3123690008%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1634-4004c13a4df8185b0390091e395e53017da71fb02044b474168136de01fb5dc53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123690008&rft_id=info:pmid/&rfr_iscdi=true