Loading…
A variational method for the sheath potential of hypersonic leading edges with space-charge limitations
Electron transpiration cooling for the leading edges (LE) of hypersonic aircraft utilizes thermionic emission; however, space-charge effects limit the electron emission rate, potentially diminishing the efficiency of this cooling mechanism. We develop a variational weak form of the Poisson equation...
Saved in:
Published in: | Physics of plasmas 2024-10, Vol.31 (10) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c209t-69b87a1ee84abdab49f1df38d9671723be90db2230dea12c9fe422f344e7cb633 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 31 |
creator | Ghoniem, Nasr M. Brown, David B. Huang, Yue |
description | Electron transpiration cooling for the leading edges (LE) of hypersonic aircraft utilizes thermionic emission; however, space-charge effects limit the electron emission rate, potentially diminishing the efficiency of this cooling mechanism. We develop a variational weak form of the Poisson equation that describes the sheath potential and then numerically solve it using the finite element method. This formulation has two main benefits: (1) the space-charge limit condition can be incorporated as a constraint and (2) it allows for the analysis of three-dimensional geometries with complex boundary conditions. We demonstrate that the current emitted from the surface of an LE is generally a small fraction of the Child–Langmuir limit due to space charge. We then propose several methods to enhance the emitted current from the surface and to boost the cooling effect of thermionic emission. These include increasing the plasma density, applying a negative surface potential, and using fringe fields under suitable geometric conditions. For a LaB6 emitting LE, the total emitted current is shown to be minimal and independent of the temperature of a surface with floating potential. However, when a negative potential is applied and the surface is heated, the emitted current follows the Richardson–Dushman relationship up to a critical temperature, beyond which it remains constant. At an applied surface potential of −5 V, the critical temperature is around 1700 K. |
doi_str_mv | 10.1063/5.0222634 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_3123905852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123905852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c209t-69b87a1ee84abdab49f1df38d9671723be90db2230dea12c9fe422f344e7cb633</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9B0JNCNV9N2-Oy-AULXhS8hTSdtlm6TU2yyv57u9s9e5qBeZhhXoSuKXmgRPLH9IEwxiQXJ2hGSV4kmczE6b7PSCKl-DpHFyGsCSFCpvkMNQv8o73V0bped3gDsXUVrp3HsQUcWtCxxYOL0Ec7zl2N290APrjeGtyBrmzfYKgaCPjXjjQM2kBiWu0bwJ3d2HhYHS7RWa27AFfHOkefz08fy9dk9f7ytlysEsNIERNZlHmmKUAudFnpUhQ1rWqeV4XMaMZ4CQWpSsY4qUBTZooaBGM1FwIyU0rO5-hm2utCtCoYG8G0xvU9mKiYkCzj-YhuJzR4972FENXabf34f1CcMl6QNE_ZqO4mZbwLwUOtBm832u8UJWoftkrVMezR3k92f_Hw8T_4D-Pbf1s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123905852</pqid></control><display><type>article</type><title>A variational method for the sheath potential of hypersonic leading edges with space-charge limitations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Ghoniem, Nasr M. ; Brown, David B. ; Huang, Yue</creator><creatorcontrib>Ghoniem, Nasr M. ; Brown, David B. ; Huang, Yue ; Nasr Ghoniem - University of California at Los Angeles (UCLA)</creatorcontrib><description>Electron transpiration cooling for the leading edges (LE) of hypersonic aircraft utilizes thermionic emission; however, space-charge effects limit the electron emission rate, potentially diminishing the efficiency of this cooling mechanism. We develop a variational weak form of the Poisson equation that describes the sheath potential and then numerically solve it using the finite element method. This formulation has two main benefits: (1) the space-charge limit condition can be incorporated as a constraint and (2) it allows for the analysis of three-dimensional geometries with complex boundary conditions. We demonstrate that the current emitted from the surface of an LE is generally a small fraction of the Child–Langmuir limit due to space charge. We then propose several methods to enhance the emitted current from the surface and to boost the cooling effect of thermionic emission. These include increasing the plasma density, applying a negative surface potential, and using fringe fields under suitable geometric conditions. For a LaB6 emitting LE, the total emitted current is shown to be minimal and independent of the temperature of a surface with floating potential. However, when a negative potential is applied and the surface is heated, the emitted current follows the Richardson–Dushman relationship up to a critical temperature, beyond which it remains constant. At an applied surface potential of −5 V, the critical temperature is around 1700 K.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0222634</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Boundary conditions ; Charge efficiency ; Cooling ; Cooling effects ; Critical temperature ; Electric potential ; Electron emission ; Finite element method ; Hypersonic aircraft ; Leading edges ; Plasma density ; Poisson equation ; Sheath potential, plasma, heat flux, plasma-facing component ; Sheaths ; Space charge ; Sweat cooling ; Thermionic emission ; Three dimensional analysis ; Transition temperature ; Transpiration</subject><ispartof>Physics of plasmas, 2024-10, Vol.31 (10)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c209t-69b87a1ee84abdab49f1df38d9671723be90db2230dea12c9fe422f344e7cb633</cites><orcidid>0000-0002-3549-646X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0222634$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2462738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghoniem, Nasr M.</creatorcontrib><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Nasr Ghoniem - University of California at Los Angeles (UCLA)</creatorcontrib><title>A variational method for the sheath potential of hypersonic leading edges with space-charge limitations</title><title>Physics of plasmas</title><description>Electron transpiration cooling for the leading edges (LE) of hypersonic aircraft utilizes thermionic emission; however, space-charge effects limit the electron emission rate, potentially diminishing the efficiency of this cooling mechanism. We develop a variational weak form of the Poisson equation that describes the sheath potential and then numerically solve it using the finite element method. This formulation has two main benefits: (1) the space-charge limit condition can be incorporated as a constraint and (2) it allows for the analysis of three-dimensional geometries with complex boundary conditions. We demonstrate that the current emitted from the surface of an LE is generally a small fraction of the Child–Langmuir limit due to space charge. We then propose several methods to enhance the emitted current from the surface and to boost the cooling effect of thermionic emission. These include increasing the plasma density, applying a negative surface potential, and using fringe fields under suitable geometric conditions. For a LaB6 emitting LE, the total emitted current is shown to be minimal and independent of the temperature of a surface with floating potential. However, when a negative potential is applied and the surface is heated, the emitted current follows the Richardson–Dushman relationship up to a critical temperature, beyond which it remains constant. At an applied surface potential of −5 V, the critical temperature is around 1700 K.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Boundary conditions</subject><subject>Charge efficiency</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Critical temperature</subject><subject>Electric potential</subject><subject>Electron emission</subject><subject>Finite element method</subject><subject>Hypersonic aircraft</subject><subject>Leading edges</subject><subject>Plasma density</subject><subject>Poisson equation</subject><subject>Sheath potential, plasma, heat flux, plasma-facing component</subject><subject>Sheaths</subject><subject>Space charge</subject><subject>Sweat cooling</subject><subject>Thermionic emission</subject><subject>Three dimensional analysis</subject><subject>Transition temperature</subject><subject>Transpiration</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNp90E1LxDAQBuAgCq6rB_9B0JNCNV9N2-Oy-AULXhS8hTSdtlm6TU2yyv57u9s9e5qBeZhhXoSuKXmgRPLH9IEwxiQXJ2hGSV4kmczE6b7PSCKl-DpHFyGsCSFCpvkMNQv8o73V0bped3gDsXUVrp3HsQUcWtCxxYOL0Ec7zl2N290APrjeGtyBrmzfYKgaCPjXjjQM2kBiWu0bwJ3d2HhYHS7RWa27AFfHOkefz08fy9dk9f7ytlysEsNIERNZlHmmKUAudFnpUhQ1rWqeV4XMaMZ4CQWpSsY4qUBTZooaBGM1FwIyU0rO5-hm2utCtCoYG8G0xvU9mKiYkCzj-YhuJzR4972FENXabf34f1CcMl6QNE_ZqO4mZbwLwUOtBm832u8UJWoftkrVMezR3k92f_Hw8T_4D-Pbf1s</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ghoniem, Nasr M.</creator><creator>Brown, David B.</creator><creator>Huang, Yue</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3549-646X</orcidid></search><sort><creationdate>20241001</creationdate><title>A variational method for the sheath potential of hypersonic leading edges with space-charge limitations</title><author>Ghoniem, Nasr M. ; Brown, David B. ; Huang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c209t-69b87a1ee84abdab49f1df38d9671723be90db2230dea12c9fe422f344e7cb633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Boundary conditions</topic><topic>Charge efficiency</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Critical temperature</topic><topic>Electric potential</topic><topic>Electron emission</topic><topic>Finite element method</topic><topic>Hypersonic aircraft</topic><topic>Leading edges</topic><topic>Plasma density</topic><topic>Poisson equation</topic><topic>Sheath potential, plasma, heat flux, plasma-facing component</topic><topic>Sheaths</topic><topic>Space charge</topic><topic>Sweat cooling</topic><topic>Thermionic emission</topic><topic>Three dimensional analysis</topic><topic>Transition temperature</topic><topic>Transpiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoniem, Nasr M.</creatorcontrib><creatorcontrib>Brown, David B.</creatorcontrib><creatorcontrib>Huang, Yue</creatorcontrib><creatorcontrib>Nasr Ghoniem - University of California at Los Angeles (UCLA)</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoniem, Nasr M.</au><au>Brown, David B.</au><au>Huang, Yue</au><aucorp>Nasr Ghoniem - University of California at Los Angeles (UCLA)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational method for the sheath potential of hypersonic leading edges with space-charge limitations</atitle><jtitle>Physics of plasmas</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>31</volume><issue>10</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Electron transpiration cooling for the leading edges (LE) of hypersonic aircraft utilizes thermionic emission; however, space-charge effects limit the electron emission rate, potentially diminishing the efficiency of this cooling mechanism. We develop a variational weak form of the Poisson equation that describes the sheath potential and then numerically solve it using the finite element method. This formulation has two main benefits: (1) the space-charge limit condition can be incorporated as a constraint and (2) it allows for the analysis of three-dimensional geometries with complex boundary conditions. We demonstrate that the current emitted from the surface of an LE is generally a small fraction of the Child–Langmuir limit due to space charge. We then propose several methods to enhance the emitted current from the surface and to boost the cooling effect of thermionic emission. These include increasing the plasma density, applying a negative surface potential, and using fringe fields under suitable geometric conditions. For a LaB6 emitting LE, the total emitted current is shown to be minimal and independent of the temperature of a surface with floating potential. However, when a negative potential is applied and the surface is heated, the emitted current follows the Richardson–Dushman relationship up to a critical temperature, beyond which it remains constant. At an applied surface potential of −5 V, the critical temperature is around 1700 K.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0222634</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3549-646X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2024-10, Vol.31 (10) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_proquest_journals_3123905852 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Boundary conditions Charge efficiency Cooling Cooling effects Critical temperature Electric potential Electron emission Finite element method Hypersonic aircraft Leading edges Plasma density Poisson equation Sheath potential, plasma, heat flux, plasma-facing component Sheaths Space charge Sweat cooling Thermionic emission Three dimensional analysis Transition temperature Transpiration |
title | A variational method for the sheath potential of hypersonic leading edges with space-charge limitations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20method%20for%20the%20sheath%20potential%20of%20hypersonic%20leading%20edges%20with%20space-charge%20limitations&rft.jtitle=Physics%20of%20plasmas&rft.au=Ghoniem,%20Nasr%20M.&rft.aucorp=Nasr%20Ghoniem%20-%20University%20of%20California%20at%20Los%20Angeles%20(UCLA)&rft.date=2024-10-01&rft.volume=31&rft.issue=10&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0222634&rft_dat=%3Cproquest_osti_%3E3123905852%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c209t-69b87a1ee84abdab49f1df38d9671723be90db2230dea12c9fe422f344e7cb633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123905852&rft_id=info:pmid/&rfr_iscdi=true |