Loading…

A new approach for solving singular dual fuzzy nonlinear equations

Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too s...

Full description

Saved in:
Bibliographic Details
Main Authors: Moyi, Aliyu Usman, Lawal, Jibril, Jameel, Ali Fareed, Ibrahim, Sulaiman M., Disu, Akeem Babatunde
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2867
creator Moyi, Aliyu Usman
Lawal, Jibril
Jameel, Ali Fareed
Ibrahim, Sulaiman M.
Disu, Akeem Babatunde
description Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.
doi_str_mv 10.1063/5.0225306
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3123907332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123907332</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsHv0HAm7A1eW-TdI-1-A8KXnrwFrLZRLesyXazq7Sf3q3t5Q08hpkfQ8gtZzPOJD6IGQMQyOQZmXAheKYkl-dkwliRZ5DjxyW5SmnDGBRKzSfkcUGD-6Wmbbto7Bf1saMpNj91-KRpPENjOloNpqF-2O93NMTQ1MGNT7cdTF_HkK7JhTdNcjcnnZL189N6-Zqt3l_elotV1kqUWWlRSRAVOCuscc6WYBUYbhRKL11Zeo6F8LycVwhOApq84JJVI2ehEACn5O4YO5JuB5d6vYlDF8ZGjRywYArx4Lo_upKt-38-3Xb1t-l2mjN9mEgLfZoI_wCAq1gJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3123907332</pqid></control><display><type>conference_proceeding</type><title>A new approach for solving singular dual fuzzy nonlinear equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde</creator><contributor>Vaidyanathan, Sundarapandian ; Supian, Sudradjat ; Sambas, Aceng ; Sukono ; Sulaiman, Ibrahim Mohammed ; Chaerani, Diah ; Mamat, Mustafa</contributor><creatorcontrib>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde ; Vaidyanathan, Sundarapandian ; Supian, Sudradjat ; Sambas, Aceng ; Sukono ; Sulaiman, Ibrahim Mohammed ; Chaerani, Diah ; Mamat, Mustafa</creatorcontrib><description>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0225306</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Iterative methods ; Nonlinear equations</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2867 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids></links><search><contributor>Vaidyanathan, Sundarapandian</contributor><contributor>Supian, Sudradjat</contributor><contributor>Sambas, Aceng</contributor><contributor>Sukono</contributor><contributor>Sulaiman, Ibrahim Mohammed</contributor><contributor>Chaerani, Diah</contributor><contributor>Mamat, Mustafa</contributor><creatorcontrib>Moyi, Aliyu Usman</creatorcontrib><creatorcontrib>Lawal, Jibril</creatorcontrib><creatorcontrib>Jameel, Ali Fareed</creatorcontrib><creatorcontrib>Ibrahim, Sulaiman M.</creatorcontrib><creatorcontrib>Disu, Akeem Babatunde</creatorcontrib><title>A new approach for solving singular dual fuzzy nonlinear equations</title><title>AIP Conference Proceedings</title><description>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</description><subject>Convergence</subject><subject>Iterative methods</subject><subject>Nonlinear equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEUxIMoWKsHv0HAm7A1eW-TdI-1-A8KXnrwFrLZRLesyXazq7Sf3q3t5Q08hpkfQ8gtZzPOJD6IGQMQyOQZmXAheKYkl-dkwliRZ5DjxyW5SmnDGBRKzSfkcUGD-6Wmbbto7Bf1saMpNj91-KRpPENjOloNpqF-2O93NMTQ1MGNT7cdTF_HkK7JhTdNcjcnnZL189N6-Zqt3l_elotV1kqUWWlRSRAVOCuscc6WYBUYbhRKL11Zeo6F8LycVwhOApq84JJVI2ehEACn5O4YO5JuB5d6vYlDF8ZGjRywYArx4Lo_upKt-38-3Xb1t-l2mjN9mEgLfZoI_wCAq1gJ</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Moyi, Aliyu Usman</creator><creator>Lawal, Jibril</creator><creator>Jameel, Ali Fareed</creator><creator>Ibrahim, Sulaiman M.</creator><creator>Disu, Akeem Babatunde</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241018</creationdate><title>A new approach for solving singular dual fuzzy nonlinear equations</title><author>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Iterative methods</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moyi, Aliyu Usman</creatorcontrib><creatorcontrib>Lawal, Jibril</creatorcontrib><creatorcontrib>Jameel, Ali Fareed</creatorcontrib><creatorcontrib>Ibrahim, Sulaiman M.</creatorcontrib><creatorcontrib>Disu, Akeem Babatunde</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moyi, Aliyu Usman</au><au>Lawal, Jibril</au><au>Jameel, Ali Fareed</au><au>Ibrahim, Sulaiman M.</au><au>Disu, Akeem Babatunde</au><au>Vaidyanathan, Sundarapandian</au><au>Supian, Sudradjat</au><au>Sambas, Aceng</au><au>Sukono</au><au>Sulaiman, Ibrahim Mohammed</au><au>Chaerani, Diah</au><au>Mamat, Mustafa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach for solving singular dual fuzzy nonlinear equations</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-10-18</date><risdate>2024</risdate><volume>2867</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225306</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2867 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3123907332
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Convergence
Iterative methods
Nonlinear equations
title A new approach for solving singular dual fuzzy nonlinear equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20for%20solving%20singular%20dual%20fuzzy%20nonlinear%20equations&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Moyi,%20Aliyu%20Usman&rft.date=2024-10-18&rft.volume=2867&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0225306&rft_dat=%3Cproquest_scita%3E3123907332%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123907332&rft_id=info:pmid/&rfr_iscdi=true