Loading…
A new approach for solving singular dual fuzzy nonlinear equations
Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too s...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2867 |
creator | Moyi, Aliyu Usman Lawal, Jibril Jameel, Ali Fareed Ibrahim, Sulaiman M. Disu, Akeem Babatunde |
description | Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method. |
doi_str_mv | 10.1063/5.0225306 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3123907332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123907332</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWKsHv0HAm7A1eW-TdI-1-A8KXnrwFrLZRLesyXazq7Sf3q3t5Q08hpkfQ8gtZzPOJD6IGQMQyOQZmXAheKYkl-dkwliRZ5DjxyW5SmnDGBRKzSfkcUGD-6Wmbbto7Bf1saMpNj91-KRpPENjOloNpqF-2O93NMTQ1MGNT7cdTF_HkK7JhTdNcjcnnZL189N6-Zqt3l_elotV1kqUWWlRSRAVOCuscc6WYBUYbhRKL11Zeo6F8LycVwhOApq84JJVI2ehEACn5O4YO5JuB5d6vYlDF8ZGjRywYArx4Lo_upKt-38-3Xb1t-l2mjN9mEgLfZoI_wCAq1gJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3123907332</pqid></control><display><type>conference_proceeding</type><title>A new approach for solving singular dual fuzzy nonlinear equations</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde</creator><contributor>Vaidyanathan, Sundarapandian ; Supian, Sudradjat ; Sambas, Aceng ; Sukono ; Sulaiman, Ibrahim Mohammed ; Chaerani, Diah ; Mamat, Mustafa</contributor><creatorcontrib>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde ; Vaidyanathan, Sundarapandian ; Supian, Sudradjat ; Sambas, Aceng ; Sukono ; Sulaiman, Ibrahim Mohammed ; Chaerani, Diah ; Mamat, Mustafa</creatorcontrib><description>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0225306</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Iterative methods ; Nonlinear equations</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2867 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids></links><search><contributor>Vaidyanathan, Sundarapandian</contributor><contributor>Supian, Sudradjat</contributor><contributor>Sambas, Aceng</contributor><contributor>Sukono</contributor><contributor>Sulaiman, Ibrahim Mohammed</contributor><contributor>Chaerani, Diah</contributor><contributor>Mamat, Mustafa</contributor><creatorcontrib>Moyi, Aliyu Usman</creatorcontrib><creatorcontrib>Lawal, Jibril</creatorcontrib><creatorcontrib>Jameel, Ali Fareed</creatorcontrib><creatorcontrib>Ibrahim, Sulaiman M.</creatorcontrib><creatorcontrib>Disu, Akeem Babatunde</creatorcontrib><title>A new approach for solving singular dual fuzzy nonlinear equations</title><title>AIP Conference Proceedings</title><description>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</description><subject>Convergence</subject><subject>Iterative methods</subject><subject>Nonlinear equations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE9LAzEUxIMoWKsHv0HAm7A1eW-TdI-1-A8KXnrwFrLZRLesyXazq7Sf3q3t5Q08hpkfQ8gtZzPOJD6IGQMQyOQZmXAheKYkl-dkwliRZ5DjxyW5SmnDGBRKzSfkcUGD-6Wmbbto7Bf1saMpNj91-KRpPENjOloNpqF-2O93NMTQ1MGNT7cdTF_HkK7JhTdNcjcnnZL189N6-Zqt3l_elotV1kqUWWlRSRAVOCuscc6WYBUYbhRKL11Zeo6F8LycVwhOApq84JJVI2ehEACn5O4YO5JuB5d6vYlDF8ZGjRywYArx4Lo_upKt-38-3Xb1t-l2mjN9mEgLfZoI_wCAq1gJ</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Moyi, Aliyu Usman</creator><creator>Lawal, Jibril</creator><creator>Jameel, Ali Fareed</creator><creator>Ibrahim, Sulaiman M.</creator><creator>Disu, Akeem Babatunde</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241018</creationdate><title>A new approach for solving singular dual fuzzy nonlinear equations</title><author>Moyi, Aliyu Usman ; Lawal, Jibril ; Jameel, Ali Fareed ; Ibrahim, Sulaiman M. ; Disu, Akeem Babatunde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Iterative methods</topic><topic>Nonlinear equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moyi, Aliyu Usman</creatorcontrib><creatorcontrib>Lawal, Jibril</creatorcontrib><creatorcontrib>Jameel, Ali Fareed</creatorcontrib><creatorcontrib>Ibrahim, Sulaiman M.</creatorcontrib><creatorcontrib>Disu, Akeem Babatunde</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moyi, Aliyu Usman</au><au>Lawal, Jibril</au><au>Jameel, Ali Fareed</au><au>Ibrahim, Sulaiman M.</au><au>Disu, Akeem Babatunde</au><au>Vaidyanathan, Sundarapandian</au><au>Supian, Sudradjat</au><au>Sambas, Aceng</au><au>Sukono</au><au>Sulaiman, Ibrahim Mohammed</au><au>Chaerani, Diah</au><au>Mamat, Mustafa</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new approach for solving singular dual fuzzy nonlinear equations</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-10-18</date><risdate>2024</risdate><volume>2867</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Newton’s method has been the famous iterative method for solving fuzzy nonlinear equations. However, the convergence of this method depends on when the Jacobian is non-singular in the neighborhood of the solution. Contrary to this condition, i.e. the Jacobian to be singular, the convergence is too slow and may even lost. In this paper we present a Jacobian computation free approach for solving dual fuzzy nonlinear equations where the Jacobian is singular. The anticipation has been to bypass the point in which the Jacobian is singular. The effectiveness of our proposed method is appraised through numerical comparison with Newton’s method.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0225306</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.2867 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3123907332 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Convergence Iterative methods Nonlinear equations |
title | A new approach for solving singular dual fuzzy nonlinear equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20approach%20for%20solving%20singular%20dual%20fuzzy%20nonlinear%20equations&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Moyi,%20Aliyu%20Usman&rft.date=2024-10-18&rft.volume=2867&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0225306&rft_dat=%3Cproquest_scita%3E3123907332%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p636-bc37625d2ec5caeecb2c72a1a736f6ebbf1395f1b8d32e623a49160d297973223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123907332&rft_id=info:pmid/&rfr_iscdi=true |