Loading…
Nudging state-space models for Bayesian filtering under misspecified dynamics
Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gonzalez, Fabian Akyildiz, O Deniz Crisan, Dan Miguez, Joaquin |
description | Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123919697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123919697</sourcerecordid><originalsourceid>FETCH-proquest_journals_31239196973</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC21iW7sqiotO7iU0L-WVNql5ydC_V8EPcLrDPSuWCCmL7HgQYsNSoiHPc1HVoixlwu6PqHu0PaegAmQ0qw745DSMxI3z_KQWIFSWGxwD-K-MVoPnExLN0KFB0FwvVk3Y0Y6tjRoJ0l-3bH-9PM-3bPbuFYFCO7jo7We1shCyKZqqqeV_6g3WXD6C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123919697</pqid></control><display><type>article</type><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><source>Publicly Available Content Database</source><creator>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</creator><creatorcontrib>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</creatorcontrib><description>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dynamical systems ; Filtration ; Robustness ; State space models</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3123919697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Gonzalez, Fabian</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><creatorcontrib>Crisan, Dan</creatorcontrib><creatorcontrib>Miguez, Joaquin</creatorcontrib><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><title>arXiv.org</title><description>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</description><subject>Dynamical systems</subject><subject>Filtration</subject><subject>Robustness</subject><subject>State space models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC21iW7sqiotO7iU0L-WVNql5ydC_V8EPcLrDPSuWCCmL7HgQYsNSoiHPc1HVoixlwu6PqHu0PaegAmQ0qw745DSMxI3z_KQWIFSWGxwD-K-MVoPnExLN0KFB0FwvVk3Y0Y6tjRoJ0l-3bH-9PM-3bPbuFYFCO7jo7We1shCyKZqqqeV_6g3WXD6C</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Gonzalez, Fabian</creator><creator>Akyildiz, O Deniz</creator><creator>Crisan, Dan</creator><creator>Miguez, Joaquin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><author>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31239196973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamical systems</topic><topic>Filtration</topic><topic>Robustness</topic><topic>State space models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Fabian</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><creatorcontrib>Crisan, Dan</creatorcontrib><creatorcontrib>Miguez, Joaquin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Fabian</au><au>Akyildiz, O Deniz</au><au>Crisan, Dan</au><au>Miguez, Joaquin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nudging state-space models for Bayesian filtering under misspecified dynamics</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3123919697 |
source | Publicly Available Content Database |
subjects | Dynamical systems Filtration Robustness State space models |
title | Nudging state-space models for Bayesian filtering under misspecified dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nudging%20state-space%20models%20for%20Bayesian%20filtering%20under%20misspecified%20dynamics&rft.jtitle=arXiv.org&rft.au=Gonzalez,%20Fabian&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123919697%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31239196973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123919697&rft_id=info:pmid/&rfr_iscdi=true |