Loading…

Nudging state-space models for Bayesian filtering under misspecified dynamics

Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-10
Main Authors: Gonzalez, Fabian, Akyildiz, O Deniz, Crisan, Dan, Miguez, Joaquin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gonzalez, Fabian
Akyildiz, O Deniz
Crisan, Dan
Miguez, Joaquin
description Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3123919697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123919697</sourcerecordid><originalsourceid>FETCH-proquest_journals_31239196973</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC21iW7sqiotO7iU0L-WVNql5ydC_V8EPcLrDPSuWCCmL7HgQYsNSoiHPc1HVoixlwu6PqHu0PaegAmQ0qw745DSMxI3z_KQWIFSWGxwD-K-MVoPnExLN0KFB0FwvVk3Y0Y6tjRoJ0l-3bH-9PM-3bPbuFYFCO7jo7We1shCyKZqqqeV_6g3WXD6C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123919697</pqid></control><display><type>article</type><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><source>Publicly Available Content Database</source><creator>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</creator><creatorcontrib>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</creatorcontrib><description>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dynamical systems ; Filtration ; Robustness ; State space models</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3123919697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Gonzalez, Fabian</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><creatorcontrib>Crisan, Dan</creatorcontrib><creatorcontrib>Miguez, Joaquin</creatorcontrib><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><title>arXiv.org</title><description>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</description><subject>Dynamical systems</subject><subject>Filtration</subject><subject>Robustness</subject><subject>State space models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC21iW7sqiotO7iU0L-WVNql5ydC_V8EPcLrDPSuWCCmL7HgQYsNSoiHPc1HVoixlwu6PqHu0PaegAmQ0qw745DSMxI3z_KQWIFSWGxwD-K-MVoPnExLN0KFB0FwvVk3Y0Y6tjRoJ0l-3bH-9PM-3bPbuFYFCO7jo7We1shCyKZqqqeV_6g3WXD6C</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>Gonzalez, Fabian</creator><creator>Akyildiz, O Deniz</creator><creator>Crisan, Dan</creator><creator>Miguez, Joaquin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241031</creationdate><title>Nudging state-space models for Bayesian filtering under misspecified dynamics</title><author>Gonzalez, Fabian ; Akyildiz, O Deniz ; Crisan, Dan ; Miguez, Joaquin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31239196973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dynamical systems</topic><topic>Filtration</topic><topic>Robustness</topic><topic>State space models</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Fabian</creatorcontrib><creatorcontrib>Akyildiz, O Deniz</creatorcontrib><creatorcontrib>Crisan, Dan</creatorcontrib><creatorcontrib>Miguez, Joaquin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Fabian</au><au>Akyildiz, O Deniz</au><au>Crisan, Dan</au><au>Miguez, Joaquin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nudging state-space models for Bayesian filtering under misspecified dynamics</atitle><jtitle>arXiv.org</jtitle><date>2024-10-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Nudging is a popular algorithmic strategy in numerical filtering to deal with the problem of inference in high-dimensional dynamical systems. We demonstrate in this paper that general nudging techniques can also tackle another crucial statistical problem in filtering, namely the misspecification of the transition model. Specifically, we rely on the formulation of nudging as a general operation increasing the likelihood and prove analytically that, when applied carefully, nudging techniques implicitly define state-space models (SSMs) that have higher marginal likelihoods for a given (fixed) sequence of observations. This provides a theoretical justification of nudging techniques as data-informed algorithmic modifications of SSMs to obtain robust models under misspecified dynamics. To demonstrate the use of nudging, we provide numerical experiments on linear Gaussian SSMs and a stochastic Lorenz 63 model with misspecified dynamics and show that nudging offers a robust filtering strategy for these cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3123919697
source Publicly Available Content Database
subjects Dynamical systems
Filtration
Robustness
State space models
title Nudging state-space models for Bayesian filtering under misspecified dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nudging%20state-space%20models%20for%20Bayesian%20filtering%20under%20misspecified%20dynamics&rft.jtitle=arXiv.org&rft.au=Gonzalez,%20Fabian&rft.date=2024-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3123919697%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31239196973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123919697&rft_id=info:pmid/&rfr_iscdi=true