Loading…
Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?
Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperfo...
Saved in:
Published in: | Journal of business ethics 2024-11, Vol.195 (1), p.151-166 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643 |
container_end_page | 166 |
container_issue | 1 |
container_start_page | 151 |
container_title | Journal of business ethics |
container_volume | 195 |
creator | Sun, Ruijie Liu, Feng Li, Yinan Wang, Rongping Luo, Jing |
description | Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market. |
doi_str_mv | 10.1007/s10551-024-05685-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123944543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123944543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZ_Gu8iKzVCi31oOItZNNsm1I3NUkRv72pK3hzLsMw771hfgCcE3xJMJZXiWDOCcIVQ5iLEUf4AAwIlxRhoeQhGGAiJGKcsWNwktIal-KEDcDbzNiV7xycOhM73y1hGyJ8im7hbd6PdYjbEE128NWHjck-dOkaTsInvAuwHs9hvTLR2OyiT9nbBGcml-HmFBy1ZpPc2W8fgpf78XM9QdP5w2N9O0W2UjwjsaBqQYxtTdVQQy1nuMEj2wg1WjSVEJIbx7grW2mblrTS0dY4IxVVRGHB6BBc9LnbGD52LmW9DrvYlZOakooqVp6mRVX1KhtDStG1ehv9u4lfmmC9J6h7groQ1D8ENS4m2ptSEXdLF_-i_3F9A9T6c6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123944543</pqid></control><display><type>article</type><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Art, Design and Architecture Collection</source><source>ABI/INFORM Global</source><source>Politics Collection</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>PAIS Index</source><source>Springer Link</source><creator>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</creator><creatorcontrib>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</creatorcontrib><description>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</description><identifier>ISSN: 0167-4544</identifier><identifier>EISSN: 1573-0697</identifier><identifier>DOI: 10.1007/s10551-024-05685-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Business and Management ; Business Ethics ; Corporate governance ; Education ; Ethics ; Financial market ; Machine learning ; Management ; Marketing ; Original Paper ; Philosophy ; Quality of Life Research ; R&D ; Research & development ; Violations</subject><ispartof>Journal of business ethics, 2024-11, Vol.195 (1), p.151-166</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</cites><orcidid>0000-0001-9367-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3123944543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3123944543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,11905,12846,12860,21386,21393,27865,27923,27924,33222,33610,33984,34774,36049,36059,43732,43947,44199,44360,44362,73992,74239,74499,74664,74666</link.rule.ids></links><search><creatorcontrib>Sun, Ruijie</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><creatorcontrib>Wang, Rongping</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><title>Journal of business ethics</title><addtitle>J Bus Ethics</addtitle><description>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</description><subject>Business and Management</subject><subject>Business Ethics</subject><subject>Corporate governance</subject><subject>Education</subject><subject>Ethics</subject><subject>Financial market</subject><subject>Machine learning</subject><subject>Management</subject><subject>Marketing</subject><subject>Original Paper</subject><subject>Philosophy</subject><subject>Quality of Life Research</subject><subject>R&D</subject><subject>Research & development</subject><subject>Violations</subject><issn>0167-4544</issn><issn>1573-0697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>DPSOV</sourceid><sourceid>K50</sourceid><sourceid>M0C</sourceid><sourceid>M1D</sourceid><sourceid>M2L</sourceid><sourceid>M2R</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZ_Gu8iKzVCi31oOItZNNsm1I3NUkRv72pK3hzLsMw771hfgCcE3xJMJZXiWDOCcIVQ5iLEUf4AAwIlxRhoeQhGGAiJGKcsWNwktIal-KEDcDbzNiV7xycOhM73y1hGyJ8im7hbd6PdYjbEE128NWHjck-dOkaTsInvAuwHs9hvTLR2OyiT9nbBGcml-HmFBy1ZpPc2W8fgpf78XM9QdP5w2N9O0W2UjwjsaBqQYxtTdVQQy1nuMEj2wg1WjSVEJIbx7grW2mblrTS0dY4IxVVRGHB6BBc9LnbGD52LmW9DrvYlZOakooqVp6mRVX1KhtDStG1ehv9u4lfmmC9J6h7groQ1D8ENS4m2ptSEXdLF_-i_3F9A9T6c6w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sun, Ruijie</creator><creator>Liu, Feng</creator><creator>Li, Yinan</creator><creator>Wang, Rongping</creator><creator>Luo, Jing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K50</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>KC-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M1D</scope><scope>M2L</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-9367-049X</orcidid></search><sort><creationdate>20241101</creationdate><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><author>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Business Ethics</topic><topic>Corporate governance</topic><topic>Education</topic><topic>Ethics</topic><topic>Financial market</topic><topic>Machine learning</topic><topic>Management</topic><topic>Marketing</topic><topic>Original Paper</topic><topic>Philosophy</topic><topic>Quality of Life Research</topic><topic>R&D</topic><topic>Research & development</topic><topic>Violations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ruijie</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><creatorcontrib>Wang, Rongping</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>PAIS Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Politics Collection</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>Art, Design and Architecture Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Healthcare Administration Database</collection><collection>ProQuest Arts & Humanities Database</collection><collection>Political Science Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of business ethics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ruijie</au><au>Liu, Feng</au><au>Li, Yinan</au><au>Wang, Rongping</au><au>Luo, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</atitle><jtitle>Journal of business ethics</jtitle><stitle>J Bus Ethics</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>195</volume><issue>1</issue><spage>151</spage><epage>166</epage><pages>151-166</pages><issn>0167-4544</issn><eissn>1573-0697</eissn><abstract>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10551-024-05685-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9367-049X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4544 |
ispartof | Journal of business ethics, 2024-11, Vol.195 (1), p.151-166 |
issn | 0167-4544 1573-0697 |
language | eng |
recordid | cdi_proquest_journals_3123944543 |
source | EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Art, Design and Architecture Collection; ABI/INFORM Global; Politics Collection; Social Science Premium Collection (Proquest) (PQ_SDU_P3); PAIS Index; Springer Link |
subjects | Business and Management Business Ethics Corporate governance Education Ethics Financial market Machine learning Management Marketing Original Paper Philosophy Quality of Life Research R&D Research & development Violations |
title | Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Predicting%20Corporate%20Violations:%20How%20Do%20CEO%20Characteristics%20Matter?&rft.jtitle=Journal%20of%20business%20ethics&rft.au=Sun,%20Ruijie&rft.date=2024-11-01&rft.volume=195&rft.issue=1&rft.spage=151&rft.epage=166&rft.pages=151-166&rft.issn=0167-4544&rft.eissn=1573-0697&rft_id=info:doi/10.1007/s10551-024-05685-0&rft_dat=%3Cproquest_cross%3E3123944543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123944543&rft_id=info:pmid/&rfr_iscdi=true |