Loading…

Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?

Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperfo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of business ethics 2024-11, Vol.195 (1), p.151-166
Main Authors: Sun, Ruijie, Liu, Feng, Li, Yinan, Wang, Rongping, Luo, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643
container_end_page 166
container_issue 1
container_start_page 151
container_title Journal of business ethics
container_volume 195
creator Sun, Ruijie
Liu, Feng
Li, Yinan
Wang, Rongping
Luo, Jing
description Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.
doi_str_mv 10.1007/s10551-024-05685-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3123944543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3123944543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZ_Gu8iKzVCi31oOItZNNsm1I3NUkRv72pK3hzLsMw771hfgCcE3xJMJZXiWDOCcIVQ5iLEUf4AAwIlxRhoeQhGGAiJGKcsWNwktIal-KEDcDbzNiV7xycOhM73y1hGyJ8im7hbd6PdYjbEE128NWHjck-dOkaTsInvAuwHs9hvTLR2OyiT9nbBGcml-HmFBy1ZpPc2W8fgpf78XM9QdP5w2N9O0W2UjwjsaBqQYxtTdVQQy1nuMEj2wg1WjSVEJIbx7grW2mblrTS0dY4IxVVRGHB6BBc9LnbGD52LmW9DrvYlZOakooqVp6mRVX1KhtDStG1ehv9u4lfmmC9J6h7groQ1D8ENS4m2ptSEXdLF_-i_3F9A9T6c6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123944543</pqid></control><display><type>article</type><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><source>EBSCOhost Business Source Ultimate</source><source>International Bibliography of the Social Sciences (IBSS)</source><source>ABI/INFORM Collection</source><source>Art, Design and Architecture Collection</source><source>ABI/INFORM Global</source><source>Politics Collection</source><source>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</source><source>PAIS Index</source><source>Springer Link</source><creator>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</creator><creatorcontrib>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</creatorcontrib><description>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</description><identifier>ISSN: 0167-4544</identifier><identifier>EISSN: 1573-0697</identifier><identifier>DOI: 10.1007/s10551-024-05685-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Business and Management ; Business Ethics ; Corporate governance ; Education ; Ethics ; Financial market ; Machine learning ; Management ; Marketing ; Original Paper ; Philosophy ; Quality of Life Research ; R&amp;D ; Research &amp; development ; Violations</subject><ispartof>Journal of business ethics, 2024-11, Vol.195 (1), p.151-166</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</cites><orcidid>0000-0001-9367-049X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3123944543/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3123944543?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,11905,12846,12860,21386,21393,27865,27923,27924,33222,33610,33984,34774,36049,36059,43732,43947,44199,44360,44362,73992,74239,74499,74664,74666</link.rule.ids></links><search><creatorcontrib>Sun, Ruijie</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><creatorcontrib>Wang, Rongping</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><title>Journal of business ethics</title><addtitle>J Bus Ethics</addtitle><description>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</description><subject>Business and Management</subject><subject>Business Ethics</subject><subject>Corporate governance</subject><subject>Education</subject><subject>Ethics</subject><subject>Financial market</subject><subject>Machine learning</subject><subject>Management</subject><subject>Marketing</subject><subject>Original Paper</subject><subject>Philosophy</subject><subject>Quality of Life Research</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Violations</subject><issn>0167-4544</issn><issn>1573-0697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><sourceid>ALSLI</sourceid><sourceid>DPSOV</sourceid><sourceid>K50</sourceid><sourceid>M0C</sourceid><sourceid>M1D</sourceid><sourceid>M2L</sourceid><sourceid>M2R</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTZ_Gu8iKzVCi31oOItZNNsm1I3NUkRv72pK3hzLsMw771hfgCcE3xJMJZXiWDOCcIVQ5iLEUf4AAwIlxRhoeQhGGAiJGKcsWNwktIal-KEDcDbzNiV7xycOhM73y1hGyJ8im7hbd6PdYjbEE128NWHjck-dOkaTsInvAuwHs9hvTLR2OyiT9nbBGcml-HmFBy1ZpPc2W8fgpf78XM9QdP5w2N9O0W2UjwjsaBqQYxtTdVQQy1nuMEj2wg1WjSVEJIbx7grW2mblrTS0dY4IxVVRGHB6BBc9LnbGD52LmW9DrvYlZOakooqVp6mRVX1KhtDStG1ehv9u4lfmmC9J6h7groQ1D8ENS4m2ptSEXdLF_-i_3F9A9T6c6w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sun, Ruijie</creator><creator>Liu, Feng</creator><creator>Li, Yinan</creator><creator>Wang, Rongping</creator><creator>Luo, Jing</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X5</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AVQMV</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K50</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>KC-</scope><scope>L.-</scope><scope>M0C</scope><scope>M0T</scope><scope>M1D</scope><scope>M2L</scope><scope>M2M</scope><scope>M2O</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-9367-049X</orcidid></search><sort><creationdate>20241101</creationdate><title>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</title><author>Sun, Ruijie ; Liu, Feng ; Li, Yinan ; Wang, Rongping ; Luo, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Business and Management</topic><topic>Business Ethics</topic><topic>Corporate governance</topic><topic>Education</topic><topic>Ethics</topic><topic>Financial market</topic><topic>Machine learning</topic><topic>Management</topic><topic>Marketing</topic><topic>Original Paper</topic><topic>Philosophy</topic><topic>Quality of Life Research</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Violations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ruijie</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Li, Yinan</creatorcontrib><creatorcontrib>Wang, Rongping</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>PAIS Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Entrepreneurship Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Arts Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Politics Collection</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>Art, Design and Architecture Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Healthcare Administration Database</collection><collection>ProQuest Arts &amp; Humanities Database</collection><collection>Political Science Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of business ethics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ruijie</au><au>Liu, Feng</au><au>Li, Yinan</au><au>Wang, Rongping</au><au>Luo, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?</atitle><jtitle>Journal of business ethics</jtitle><stitle>J Bus Ethics</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>195</volume><issue>1</issue><spage>151</spage><epage>166</epage><pages>151-166</pages><issn>0167-4544</issn><eissn>1573-0697</eissn><abstract>Based on upper echelon theory, we employ machine learning to explore how CEO characteristics influence corporate violations using a large-scale dataset of listed firms in China for the period 2010–2020. Comparing ten machine learning methods, we find that eXtreme Gradient Boosting (XGBoost) outperforms the other models in predicting corporate violations. An interpretable model combining XGBoost and SHapley Additive exPlanations (SHAP) indicates that CEO characteristics play a central role in predicting corporate violations. Tenure has the strongest predictive power and is negatively associated with corporate violations, followed by marketing experience, education, duality (i.e., simultaneously holding the position of chairperson), and research and development experience. In contrast, shareholdings, age, and pay are positively related to corporate violations. We also analyze violation severity and violation type, confirming the role of tenure in predicting more severe and intentional violations. Overall, our findings contribute to preventing corporate violations, improving corporate governance, and maintaining order in the financial market.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10551-024-05685-0</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9367-049X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4544
ispartof Journal of business ethics, 2024-11, Vol.195 (1), p.151-166
issn 0167-4544
1573-0697
language eng
recordid cdi_proquest_journals_3123944543
source EBSCOhost Business Source Ultimate; International Bibliography of the Social Sciences (IBSS); ABI/INFORM Collection; Art, Design and Architecture Collection; ABI/INFORM Global; Politics Collection; Social Science Premium Collection (Proquest) (PQ_SDU_P3); PAIS Index; Springer Link
subjects Business and Management
Business Ethics
Corporate governance
Education
Ethics
Financial market
Machine learning
Management
Marketing
Original Paper
Philosophy
Quality of Life Research
R&D
Research & development
Violations
title Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20for%20Predicting%20Corporate%20Violations:%20How%20Do%20CEO%20Characteristics%20Matter?&rft.jtitle=Journal%20of%20business%20ethics&rft.au=Sun,%20Ruijie&rft.date=2024-11-01&rft.volume=195&rft.issue=1&rft.spage=151&rft.epage=166&rft.pages=151-166&rft.issn=0167-4544&rft.eissn=1573-0697&rft_id=info:doi/10.1007/s10551-024-05685-0&rft_dat=%3Cproquest_cross%3E3123944543%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-6d39d1acfa2b3a3c540b08cb698db26675ae45ea2b7cbf1f7e3faea7939190643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123944543&rft_id=info:pmid/&rfr_iscdi=true