Loading…

A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days

We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μ m) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2024-11, Vol.975 (2), p.203
Main Authors: Ashall, C., Hoeflich, P., Baron, E., Shahbandeh, M., DerKacy, J. M., Medler, K., Shappee, B. J., Tucker, M. A., Fereidouni, E., Mera, T., Andrews, J., Baade, D., Bostroem, K. A., Brown, P. J., Burns, C. R., Burrow, A., Cikota, A., de Jaeger, T., Do, A., Dong, Y., Dominguez, I., Fox, O., Galbany, L., Hsiao, E. Y., Krisciunas, K., Khaghani, B., Kumar, S., Lu, J., Maund, J. R., Mazzali, P., Morrell, N., Patat, F., Pfeffer, C., Phillips, M. M., Schmidt, J., Stangl, S., Stevens, C. P., Stritzinger, M. D., Suntzeff, N. B., Telesco, C. M., Wang, L., Yang, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c299t-134d877d505c1b3ec03d585d32711bc20ebf388c47c20354c74562929faf80c23
container_end_page
container_issue 2
container_start_page 203
container_title The Astrophysical journal
container_volume 975
creator Ashall, C.
Hoeflich, P.
Baron, E.
Shahbandeh, M.
DerKacy, J. M.
Medler, K.
Shappee, B. J.
Tucker, M. A.
Fereidouni, E.
Mera, T.
Andrews, J.
Baade, D.
Bostroem, K. A.
Brown, P. J.
Burns, C. R.
Burrow, A.
Cikota, A.
de Jaeger, T.
Do, A.
Dong, Y.
Dominguez, I.
Fox, O.
Galbany, L.
Hsiao, E. Y.
Krisciunas, K.
Khaghani, B.
Kumar, S.
Lu, J.
Maund, J. R.
Mazzali, P.
Morrell, N.
Patat, F.
Pfeffer, C.
Phillips, M. M.
Schmidt, J.
Stangl, S.
Stevens, C. P.
Stritzinger, M. D.
Suntzeff, N. B.
Telesco, C. M.
Wang, L.
Yang, Y.
description We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μ m) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Co iii ] 11.888 μ m feature directly traces the decay of 56 Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities of ρ c = 0.9−1.1 × 10 9 g cm −3 , a WD mass of M WD = 1.33–1.35 M ⊙ , a WD magnetic field of ≈10 6 G, and an off-center deflagration-to-detonation transition at ≈0.5 M ⊙ seen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition from γ -rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9 μ m now has a significant contribution from [Ni iv ], [Fe ii ], and [Fe iii ] and less from [Ar iii ], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition.
doi_str_mv 10.3847/1538-4357/ad6608
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124109751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fa8b83c765ab4f9093a8896b64fcb1c6</doaj_id><sourcerecordid>3124109751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-134d877d505c1b3ec03d585d32711bc20ebf388c47c20354c74562929faf80c23</originalsourceid><addsrcrecordid>eNp1UctOwzAQtBBIlMKdoyWOEPAzdo4I8QiiQqJFcDOOH5CqrYOdIPr3pATBidPujmZmRxoADjE6pZKJM8ypzBjl4kzbPEdyC4x-oW0wQgixLKfieRfspTTfnKQoRuDlHN4-TWdw4mzdLbPoUlh0bR1WcFI-lHDaONPGbgn1ysJJsG6RYPCwfXNwtm4cLDWcdo2Lq_ChIUEEa-c_oW7hMcMcWr1O-2DH60VyBz9zDB6vLmcXN9nd_XV5cX6XmT5Hm2HKrBTCcsQNrqgziFouuaVEYFwZglzlqZSGiX6nnBnBeE4KUnjtJTKEjkE5-Nqg56qJ9VLHtQq6Vt9AiK9Kx7Y2C6e8lpWkRuRcV8wXqKBayiKvcuZNhU3eex0NXk0M751LrZqHLq76-IpiwjAqBMc9Cw0sE0NK0fnfrxipTSdqU4DaFKCGTnrJySCpQ_Pn-S_9C2UBiKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124109751</pqid></control><display><type>article</type><title>A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days</title><source>EZB Free E-Journals</source><creator>Ashall, C. ; Hoeflich, P. ; Baron, E. ; Shahbandeh, M. ; DerKacy, J. M. ; Medler, K. ; Shappee, B. J. ; Tucker, M. A. ; Fereidouni, E. ; Mera, T. ; Andrews, J. ; Baade, D. ; Bostroem, K. A. ; Brown, P. J. ; Burns, C. R. ; Burrow, A. ; Cikota, A. ; de Jaeger, T. ; Do, A. ; Dong, Y. ; Dominguez, I. ; Fox, O. ; Galbany, L. ; Hsiao, E. Y. ; Krisciunas, K. ; Khaghani, B. ; Kumar, S. ; Lu, J. ; Maund, J. R. ; Mazzali, P. ; Morrell, N. ; Patat, F. ; Pfeffer, C. ; Phillips, M. M. ; Schmidt, J. ; Stangl, S. ; Stevens, C. P. ; Stritzinger, M. D. ; Suntzeff, N. B. ; Telesco, C. M. ; Wang, L. ; Yang, Y.</creator><creatorcontrib>Ashall, C. ; Hoeflich, P. ; Baron, E. ; Shahbandeh, M. ; DerKacy, J. M. ; Medler, K. ; Shappee, B. J. ; Tucker, M. A. ; Fereidouni, E. ; Mera, T. ; Andrews, J. ; Baade, D. ; Bostroem, K. A. ; Brown, P. J. ; Burns, C. R. ; Burrow, A. ; Cikota, A. ; de Jaeger, T. ; Do, A. ; Dong, Y. ; Dominguez, I. ; Fox, O. ; Galbany, L. ; Hsiao, E. Y. ; Krisciunas, K. ; Khaghani, B. ; Kumar, S. ; Lu, J. ; Maund, J. R. ; Mazzali, P. ; Morrell, N. ; Patat, F. ; Pfeffer, C. ; Phillips, M. M. ; Schmidt, J. ; Stangl, S. ; Stevens, C. P. ; Stritzinger, M. D. ; Suntzeff, N. B. ; Telesco, C. M. ; Wang, L. ; Yang, Y.</creatorcontrib><description>We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μ m) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Co iii ] 11.888 μ m feature directly traces the decay of 56 Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities of ρ c = 0.9−1.1 × 10 9 g cm −3 , a WD mass of M WD = 1.33–1.35 M ⊙ , a WD magnetic field of ≈10 6 G, and an off-center deflagration-to-detonation transition at ≈0.5 M ⊙ seen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition from γ -rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9 μ m now has a significant contribution from [Ni iv ], [Fe ii ], and [Fe iii ] and less from [Ar iii ], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad6608</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Deflagration ; Deposition ; Detonation ; Electron capture ; Evolution ; Excitation spectra ; Gamma rays ; Ignition ; Iron ; James Webb Space Telescope ; Line spectra ; Magnetic fields ; Nickel ; Positrons ; Supernova ; Supernovae ; Type Ia supernovae ; Velocity distribution ; White dwarf stars</subject><ispartof>The Astrophysical journal, 2024-11, Vol.975 (2), p.203</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-134d877d505c1b3ec03d585d32711bc20ebf388c47c20354c74562929faf80c23</cites><orcidid>0000-0002-6535-8500 ; 0000-0002-8102-181X ; 0000-0002-7566-6080 ; 0000-0003-1637-9679 ; 0000-0002-9301-5302 ; 0000-0003-0733-7215 ; 0000-0001-6069-1139 ; 0000-0001-6272-5507 ; 0000-0002-3827-4731 ; 0000-0003-4631-1149 ; 0000-0003-0123-0062 ; 0000-0001-6876-8284 ; 0000-0001-7186-105X ; 0000-0002-3900-1452 ; 0000-0002-5221-7557 ; 0000-0002-0036-9292 ; 0009-0005-0311-0058 ; 0000-0002-4924-444X ; 0000-0001-5570-6666 ; 0000-0002-5380-0816 ; 0000-0003-2238-1572 ; 0000-0001-8367-7591 ; 0000-0003-2535-3091 ; 0000-0001-5393-1608 ; 0009-0001-9148-8421 ; 0000-0002-5571-1833 ; 0000-0002-4338-6586 ; 0000-0002-7937-6371 ; 0000-0003-3429-7845 ; 0000-0002-0537-3573 ; 0000-0002-1296-6887 ; 0000-0002-6650-694X ; 0000-0002-7305-8321 ; 0000-0003-2734-0796 ; 0000-0003-4625-6629 ; 0000-0003-0763-6004 ; 0000-0001-5888-2542 ; 0000-0003-1039-2928 ; 0000-0002-2617-5517 ; 0000-0001-7101-9831 ; 0000-0002-2471-8442 ; 0000-0001-7092-9374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Ashall, C.</creatorcontrib><creatorcontrib>Hoeflich, P.</creatorcontrib><creatorcontrib>Baron, E.</creatorcontrib><creatorcontrib>Shahbandeh, M.</creatorcontrib><creatorcontrib>DerKacy, J. M.</creatorcontrib><creatorcontrib>Medler, K.</creatorcontrib><creatorcontrib>Shappee, B. J.</creatorcontrib><creatorcontrib>Tucker, M. A.</creatorcontrib><creatorcontrib>Fereidouni, E.</creatorcontrib><creatorcontrib>Mera, T.</creatorcontrib><creatorcontrib>Andrews, J.</creatorcontrib><creatorcontrib>Baade, D.</creatorcontrib><creatorcontrib>Bostroem, K. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burns, C. R.</creatorcontrib><creatorcontrib>Burrow, A.</creatorcontrib><creatorcontrib>Cikota, A.</creatorcontrib><creatorcontrib>de Jaeger, T.</creatorcontrib><creatorcontrib>Do, A.</creatorcontrib><creatorcontrib>Dong, Y.</creatorcontrib><creatorcontrib>Dominguez, I.</creatorcontrib><creatorcontrib>Fox, O.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Krisciunas, K.</creatorcontrib><creatorcontrib>Khaghani, B.</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Lu, J.</creatorcontrib><creatorcontrib>Maund, J. R.</creatorcontrib><creatorcontrib>Mazzali, P.</creatorcontrib><creatorcontrib>Morrell, N.</creatorcontrib><creatorcontrib>Patat, F.</creatorcontrib><creatorcontrib>Pfeffer, C.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Schmidt, J.</creatorcontrib><creatorcontrib>Stangl, S.</creatorcontrib><creatorcontrib>Stevens, C. P.</creatorcontrib><creatorcontrib>Stritzinger, M. D.</creatorcontrib><creatorcontrib>Suntzeff, N. B.</creatorcontrib><creatorcontrib>Telesco, C. M.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><title>A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μ m) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Co iii ] 11.888 μ m feature directly traces the decay of 56 Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities of ρ c = 0.9−1.1 × 10 9 g cm −3 , a WD mass of M WD = 1.33–1.35 M ⊙ , a WD magnetic field of ≈10 6 G, and an off-center deflagration-to-detonation transition at ≈0.5 M ⊙ seen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition from γ -rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9 μ m now has a significant contribution from [Ni iv ], [Fe ii ], and [Fe iii ] and less from [Ar iii ], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition.</description><subject>Deflagration</subject><subject>Deposition</subject><subject>Detonation</subject><subject>Electron capture</subject><subject>Evolution</subject><subject>Excitation spectra</subject><subject>Gamma rays</subject><subject>Ignition</subject><subject>Iron</subject><subject>James Webb Space Telescope</subject><subject>Line spectra</subject><subject>Magnetic fields</subject><subject>Nickel</subject><subject>Positrons</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Type Ia supernovae</subject><subject>Velocity distribution</subject><subject>White dwarf stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp1UctOwzAQtBBIlMKdoyWOEPAzdo4I8QiiQqJFcDOOH5CqrYOdIPr3pATBidPujmZmRxoADjE6pZKJM8ypzBjl4kzbPEdyC4x-oW0wQgixLKfieRfspTTfnKQoRuDlHN4-TWdw4mzdLbPoUlh0bR1WcFI-lHDaONPGbgn1ysJJsG6RYPCwfXNwtm4cLDWcdo2Lq_ChIUEEa-c_oW7hMcMcWr1O-2DH60VyBz9zDB6vLmcXN9nd_XV5cX6XmT5Hm2HKrBTCcsQNrqgziFouuaVEYFwZglzlqZSGiX6nnBnBeE4KUnjtJTKEjkE5-Nqg56qJ9VLHtQq6Vt9AiK9Kx7Y2C6e8lpWkRuRcV8wXqKBayiKvcuZNhU3eex0NXk0M751LrZqHLq76-IpiwjAqBMc9Cw0sE0NK0fnfrxipTSdqU4DaFKCGTnrJySCpQ_Pn-S_9C2UBiKQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ashall, C.</creator><creator>Hoeflich, P.</creator><creator>Baron, E.</creator><creator>Shahbandeh, M.</creator><creator>DerKacy, J. M.</creator><creator>Medler, K.</creator><creator>Shappee, B. J.</creator><creator>Tucker, M. A.</creator><creator>Fereidouni, E.</creator><creator>Mera, T.</creator><creator>Andrews, J.</creator><creator>Baade, D.</creator><creator>Bostroem, K. A.</creator><creator>Brown, P. J.</creator><creator>Burns, C. R.</creator><creator>Burrow, A.</creator><creator>Cikota, A.</creator><creator>de Jaeger, T.</creator><creator>Do, A.</creator><creator>Dong, Y.</creator><creator>Dominguez, I.</creator><creator>Fox, O.</creator><creator>Galbany, L.</creator><creator>Hsiao, E. Y.</creator><creator>Krisciunas, K.</creator><creator>Khaghani, B.</creator><creator>Kumar, S.</creator><creator>Lu, J.</creator><creator>Maund, J. R.</creator><creator>Mazzali, P.</creator><creator>Morrell, N.</creator><creator>Patat, F.</creator><creator>Pfeffer, C.</creator><creator>Phillips, M. M.</creator><creator>Schmidt, J.</creator><creator>Stangl, S.</creator><creator>Stevens, C. P.</creator><creator>Stritzinger, M. D.</creator><creator>Suntzeff, N. B.</creator><creator>Telesco, C. M.</creator><creator>Wang, L.</creator><creator>Yang, Y.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6535-8500</orcidid><orcidid>https://orcid.org/0000-0002-8102-181X</orcidid><orcidid>https://orcid.org/0000-0002-7566-6080</orcidid><orcidid>https://orcid.org/0000-0003-1637-9679</orcidid><orcidid>https://orcid.org/0000-0002-9301-5302</orcidid><orcidid>https://orcid.org/0000-0003-0733-7215</orcidid><orcidid>https://orcid.org/0000-0001-6069-1139</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-3827-4731</orcidid><orcidid>https://orcid.org/0000-0003-4631-1149</orcidid><orcidid>https://orcid.org/0000-0003-0123-0062</orcidid><orcidid>https://orcid.org/0000-0001-6876-8284</orcidid><orcidid>https://orcid.org/0000-0001-7186-105X</orcidid><orcidid>https://orcid.org/0000-0002-3900-1452</orcidid><orcidid>https://orcid.org/0000-0002-5221-7557</orcidid><orcidid>https://orcid.org/0000-0002-0036-9292</orcidid><orcidid>https://orcid.org/0009-0005-0311-0058</orcidid><orcidid>https://orcid.org/0000-0002-4924-444X</orcidid><orcidid>https://orcid.org/0000-0001-5570-6666</orcidid><orcidid>https://orcid.org/0000-0002-5380-0816</orcidid><orcidid>https://orcid.org/0000-0003-2238-1572</orcidid><orcidid>https://orcid.org/0000-0001-8367-7591</orcidid><orcidid>https://orcid.org/0000-0003-2535-3091</orcidid><orcidid>https://orcid.org/0000-0001-5393-1608</orcidid><orcidid>https://orcid.org/0009-0001-9148-8421</orcidid><orcidid>https://orcid.org/0000-0002-5571-1833</orcidid><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0002-7937-6371</orcidid><orcidid>https://orcid.org/0000-0003-3429-7845</orcidid><orcidid>https://orcid.org/0000-0002-0537-3573</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0002-6650-694X</orcidid><orcidid>https://orcid.org/0000-0002-7305-8321</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0003-0763-6004</orcidid><orcidid>https://orcid.org/0000-0001-5888-2542</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-2617-5517</orcidid><orcidid>https://orcid.org/0000-0001-7101-9831</orcidid><orcidid>https://orcid.org/0000-0002-2471-8442</orcidid><orcidid>https://orcid.org/0000-0001-7092-9374</orcidid></search><sort><creationdate>20241101</creationdate><title>A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days</title><author>Ashall, C. ; Hoeflich, P. ; Baron, E. ; Shahbandeh, M. ; DerKacy, J. M. ; Medler, K. ; Shappee, B. J. ; Tucker, M. A. ; Fereidouni, E. ; Mera, T. ; Andrews, J. ; Baade, D. ; Bostroem, K. A. ; Brown, P. J. ; Burns, C. R. ; Burrow, A. ; Cikota, A. ; de Jaeger, T. ; Do, A. ; Dong, Y. ; Dominguez, I. ; Fox, O. ; Galbany, L. ; Hsiao, E. Y. ; Krisciunas, K. ; Khaghani, B. ; Kumar, S. ; Lu, J. ; Maund, J. R. ; Mazzali, P. ; Morrell, N. ; Patat, F. ; Pfeffer, C. ; Phillips, M. M. ; Schmidt, J. ; Stangl, S. ; Stevens, C. P. ; Stritzinger, M. D. ; Suntzeff, N. B. ; Telesco, C. M. ; Wang, L. ; Yang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-134d877d505c1b3ec03d585d32711bc20ebf388c47c20354c74562929faf80c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deflagration</topic><topic>Deposition</topic><topic>Detonation</topic><topic>Electron capture</topic><topic>Evolution</topic><topic>Excitation spectra</topic><topic>Gamma rays</topic><topic>Ignition</topic><topic>Iron</topic><topic>James Webb Space Telescope</topic><topic>Line spectra</topic><topic>Magnetic fields</topic><topic>Nickel</topic><topic>Positrons</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Type Ia supernovae</topic><topic>Velocity distribution</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashall, C.</creatorcontrib><creatorcontrib>Hoeflich, P.</creatorcontrib><creatorcontrib>Baron, E.</creatorcontrib><creatorcontrib>Shahbandeh, M.</creatorcontrib><creatorcontrib>DerKacy, J. M.</creatorcontrib><creatorcontrib>Medler, K.</creatorcontrib><creatorcontrib>Shappee, B. J.</creatorcontrib><creatorcontrib>Tucker, M. A.</creatorcontrib><creatorcontrib>Fereidouni, E.</creatorcontrib><creatorcontrib>Mera, T.</creatorcontrib><creatorcontrib>Andrews, J.</creatorcontrib><creatorcontrib>Baade, D.</creatorcontrib><creatorcontrib>Bostroem, K. A.</creatorcontrib><creatorcontrib>Brown, P. J.</creatorcontrib><creatorcontrib>Burns, C. R.</creatorcontrib><creatorcontrib>Burrow, A.</creatorcontrib><creatorcontrib>Cikota, A.</creatorcontrib><creatorcontrib>de Jaeger, T.</creatorcontrib><creatorcontrib>Do, A.</creatorcontrib><creatorcontrib>Dong, Y.</creatorcontrib><creatorcontrib>Dominguez, I.</creatorcontrib><creatorcontrib>Fox, O.</creatorcontrib><creatorcontrib>Galbany, L.</creatorcontrib><creatorcontrib>Hsiao, E. Y.</creatorcontrib><creatorcontrib>Krisciunas, K.</creatorcontrib><creatorcontrib>Khaghani, B.</creatorcontrib><creatorcontrib>Kumar, S.</creatorcontrib><creatorcontrib>Lu, J.</creatorcontrib><creatorcontrib>Maund, J. R.</creatorcontrib><creatorcontrib>Mazzali, P.</creatorcontrib><creatorcontrib>Morrell, N.</creatorcontrib><creatorcontrib>Patat, F.</creatorcontrib><creatorcontrib>Pfeffer, C.</creatorcontrib><creatorcontrib>Phillips, M. M.</creatorcontrib><creatorcontrib>Schmidt, J.</creatorcontrib><creatorcontrib>Stangl, S.</creatorcontrib><creatorcontrib>Stevens, C. P.</creatorcontrib><creatorcontrib>Stritzinger, M. D.</creatorcontrib><creatorcontrib>Suntzeff, N. B.</creatorcontrib><creatorcontrib>Telesco, C. M.</creatorcontrib><creatorcontrib>Wang, L.</creatorcontrib><creatorcontrib>Yang, Y.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashall, C.</au><au>Hoeflich, P.</au><au>Baron, E.</au><au>Shahbandeh, M.</au><au>DerKacy, J. M.</au><au>Medler, K.</au><au>Shappee, B. J.</au><au>Tucker, M. A.</au><au>Fereidouni, E.</au><au>Mera, T.</au><au>Andrews, J.</au><au>Baade, D.</au><au>Bostroem, K. A.</au><au>Brown, P. J.</au><au>Burns, C. R.</au><au>Burrow, A.</au><au>Cikota, A.</au><au>de Jaeger, T.</au><au>Do, A.</au><au>Dong, Y.</au><au>Dominguez, I.</au><au>Fox, O.</au><au>Galbany, L.</au><au>Hsiao, E. Y.</au><au>Krisciunas, K.</au><au>Khaghani, B.</au><au>Kumar, S.</au><au>Lu, J.</au><au>Maund, J. R.</au><au>Mazzali, P.</au><au>Morrell, N.</au><au>Patat, F.</au><au>Pfeffer, C.</au><au>Phillips, M. M.</au><au>Schmidt, J.</au><au>Stangl, S.</au><au>Stevens, C. P.</au><au>Stritzinger, M. D.</au><au>Suntzeff, N. B.</au><au>Telesco, C. M.</au><au>Wang, L.</au><au>Yang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>975</volume><issue>2</issue><spage>203</spage><pages>203-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μ m) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Co iii ] 11.888 μ m feature directly traces the decay of 56 Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities of ρ c = 0.9−1.1 × 10 9 g cm −3 , a WD mass of M WD = 1.33–1.35 M ⊙ , a WD magnetic field of ≈10 6 G, and an off-center deflagration-to-detonation transition at ≈0.5 M ⊙ seen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition from γ -rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9 μ m now has a significant contribution from [Ni iv ], [Fe ii ], and [Fe iii ] and less from [Ar iii ], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad6608</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-6535-8500</orcidid><orcidid>https://orcid.org/0000-0002-8102-181X</orcidid><orcidid>https://orcid.org/0000-0002-7566-6080</orcidid><orcidid>https://orcid.org/0000-0003-1637-9679</orcidid><orcidid>https://orcid.org/0000-0002-9301-5302</orcidid><orcidid>https://orcid.org/0000-0003-0733-7215</orcidid><orcidid>https://orcid.org/0000-0001-6069-1139</orcidid><orcidid>https://orcid.org/0000-0001-6272-5507</orcidid><orcidid>https://orcid.org/0000-0002-3827-4731</orcidid><orcidid>https://orcid.org/0000-0003-4631-1149</orcidid><orcidid>https://orcid.org/0000-0003-0123-0062</orcidid><orcidid>https://orcid.org/0000-0001-6876-8284</orcidid><orcidid>https://orcid.org/0000-0001-7186-105X</orcidid><orcidid>https://orcid.org/0000-0002-3900-1452</orcidid><orcidid>https://orcid.org/0000-0002-5221-7557</orcidid><orcidid>https://orcid.org/0000-0002-0036-9292</orcidid><orcidid>https://orcid.org/0009-0005-0311-0058</orcidid><orcidid>https://orcid.org/0000-0002-4924-444X</orcidid><orcidid>https://orcid.org/0000-0001-5570-6666</orcidid><orcidid>https://orcid.org/0000-0002-5380-0816</orcidid><orcidid>https://orcid.org/0000-0003-2238-1572</orcidid><orcidid>https://orcid.org/0000-0001-8367-7591</orcidid><orcidid>https://orcid.org/0000-0003-2535-3091</orcidid><orcidid>https://orcid.org/0000-0001-5393-1608</orcidid><orcidid>https://orcid.org/0009-0001-9148-8421</orcidid><orcidid>https://orcid.org/0000-0002-5571-1833</orcidid><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0002-7937-6371</orcidid><orcidid>https://orcid.org/0000-0003-3429-7845</orcidid><orcidid>https://orcid.org/0000-0002-0537-3573</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0002-6650-694X</orcidid><orcidid>https://orcid.org/0000-0002-7305-8321</orcidid><orcidid>https://orcid.org/0000-0003-2734-0796</orcidid><orcidid>https://orcid.org/0000-0003-4625-6629</orcidid><orcidid>https://orcid.org/0000-0003-0763-6004</orcidid><orcidid>https://orcid.org/0000-0001-5888-2542</orcidid><orcidid>https://orcid.org/0000-0003-1039-2928</orcidid><orcidid>https://orcid.org/0000-0002-2617-5517</orcidid><orcidid>https://orcid.org/0000-0001-7101-9831</orcidid><orcidid>https://orcid.org/0000-0002-2471-8442</orcidid><orcidid>https://orcid.org/0000-0001-7092-9374</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-11, Vol.975 (2), p.203
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3124109751
source EZB Free E-Journals
subjects Deflagration
Deposition
Detonation
Electron capture
Evolution
Excitation spectra
Gamma rays
Ignition
Iron
James Webb Space Telescope
Line spectra
Magnetic fields
Nickel
Positrons
Supernova
Supernovae
Type Ia supernovae
Velocity distribution
White dwarf stars
title A JWST Medium-resolution MIRI Spectrum and Models of the Type Ia Supernova 2021aefx at +415 days
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20JWST%20Medium-resolution%20MIRI%20Spectrum%20and%20Models%20of%20the%20Type%20Ia%20Supernova%202021aefx%20at%20+415%20days&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ashall,%20C.&rft.date=2024-11-01&rft.volume=975&rft.issue=2&rft.spage=203&rft.pages=203-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad6608&rft_dat=%3Cproquest_cross%3E3124109751%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-134d877d505c1b3ec03d585d32711bc20ebf388c47c20354c74562929faf80c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124109751&rft_id=info:pmid/&rfr_iscdi=true