Loading…

On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs

A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Lok Pati Tripathi, Tomar, Aditi, Pani, Amiya K
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lok Pati Tripathi
Tomar, Aditi
Pani, Amiya K
description A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in \(L^2\)-norm when the initial data \(u_0\in H_0^1(\Omega)\cap H^2(\Omega)\). Additionally, an error estimate in \(L^\infty\)-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as \(\alpha\to 1^{-}\), where \(\alpha\) is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124188328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124188328</sourcerecordid><originalsourceid>FETCH-proquest_journals_31241883283</originalsourceid><addsrcrecordid>eNqNysEKgjAYAOARBEn5Dj90qcPAbVq71yQhLcKggyCrJim6mVPo8fPQA3T6Lt8EOZQxgrlP6Qy51lae59HNlgYBc1By0iAhMRpfdVmYroFslcm6fclsjS_mPtgeoljc8JFAXH7UE0IRwxghLRuFw04--tJoWcM52gu7QNNC1la5P-doGYp0d8BtZ96Dsn1emaEbu80ZoT7hnFHO_ltfKZs69w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124188328</pqid></control><display><type>article</type><title>On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs</title><source>Publicly Available Content Database</source><creator>Lok Pati Tripathi ; Tomar, Aditi ; Pani, Amiya K</creator><creatorcontrib>Lok Pati Tripathi ; Tomar, Aditi ; Pani, Amiya K</creatorcontrib><description>A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in \(L^2\)-norm when the initial data \(u_0\in H_0^1(\Omega)\cap H^2(\Omega)\). Additionally, an error estimate in \(L^\infty\)-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as \(\alpha\to 1^{-}\), where \(\alpha\) is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Differential equations ; Error analysis ; Estimates ; Finite element method ; Time dependence</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3124188328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Lok Pati Tripathi</creatorcontrib><creatorcontrib>Tomar, Aditi</creatorcontrib><creatorcontrib>Pani, Amiya K</creatorcontrib><title>On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs</title><title>arXiv.org</title><description>A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in \(L^2\)-norm when the initial data \(u_0\in H_0^1(\Omega)\cap H^2(\Omega)\). Additionally, an error estimate in \(L^\infty\)-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as \(\alpha\to 1^{-}\), where \(\alpha\) is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.</description><subject>Differential equations</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Finite element method</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgjAYAOARBEn5Dj90qcPAbVq71yQhLcKggyCrJim6mVPo8fPQA3T6Lt8EOZQxgrlP6Qy51lae59HNlgYBc1By0iAhMRpfdVmYroFslcm6fclsjS_mPtgeoljc8JFAXH7UE0IRwxghLRuFw04--tJoWcM52gu7QNNC1la5P-doGYp0d8BtZ96Dsn1emaEbu80ZoT7hnFHO_ltfKZs69w</recordid><startdate>20241104</startdate><enddate>20241104</enddate><creator>Lok Pati Tripathi</creator><creator>Tomar, Aditi</creator><creator>Pani, Amiya K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241104</creationdate><title>On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs</title><author>Lok Pati Tripathi ; Tomar, Aditi ; Pani, Amiya K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31241883283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Finite element method</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Lok Pati Tripathi</creatorcontrib><creatorcontrib>Tomar, Aditi</creatorcontrib><creatorcontrib>Pani, Amiya K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lok Pati Tripathi</au><au>Tomar, Aditi</au><au>Pani, Amiya K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs</atitle><jtitle>arXiv.org</jtitle><date>2024-11-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>A non-uniform implicit-explicit L1 mixed finite element method (IMEX-L1-MFEM) is investigated for a class of time-fractional partial integro-differential equations (PIDEs) with space-time dependent coefficients and non-self-adjoint elliptic part. The proposed fully discrete method combines an IMEX-L1 method on a graded mesh in the temporal variable with a mixed finite element method in spatial variables. The focus of the study is to analyze stability results and to establish optimal error estimates, up to a logarithmic factor, for both the solution and the flux in \(L^2\)-norm when the initial data \(u_0\in H_0^1(\Omega)\cap H^2(\Omega)\). Additionally, an error estimate in \(L^\infty\)-norm is derived for 2D problems. All the derived estimates and bounds in this article remain valid as \(\alpha\to 1^{-}\), where \(\alpha\) is the order of the Caputo fractional derivative. Finally, the results of several numerical experiments conducted at the end of this paper are confirming our theoretical findings.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3124188328
source Publicly Available Content Database
subjects Differential equations
Error analysis
Estimates
Finite element method
Time dependence
title On a Non-Uniform \(\alpha\)-Robust IMEX-L1 Mixed FEM for Time-Fractional PIDEs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20a%20Non-Uniform%20%5C(%5Calpha%5C)-Robust%20IMEX-L1%20Mixed%20FEM%20for%20Time-Fractional%20PIDEs&rft.jtitle=arXiv.org&rft.au=Lok%20Pati%20Tripathi&rft.date=2024-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124188328%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31241883283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124188328&rft_id=info:pmid/&rfr_iscdi=true