Loading…

Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding

Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel...

Full description

Saved in:
Bibliographic Details
Published in:Cluster computing 2025-02, Vol.28 (1), p.68, Article 68
Main Authors: Salcedo-Navarro, Andoni, Peña-Ortiz, Raúl, Claver, Jose M., Garcia-Pineda, Miguel, Gutiérrez-Aguado, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3
container_end_page
container_issue 1
container_start_page 68
container_title Cluster computing
container_volume 28
creator Salcedo-Navarro, Andoni
Peña-Ortiz, Raúl
Claver, Jose M.
Garcia-Pineda, Miguel
Gutiérrez-Aguado, Juan
description Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.
doi_str_mv 10.1007/s10586-024-04692-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tyb7N7lFJboaCHtteQTbKlZbupybbitzd1BW9eZoaZ997AD6F7Co8UQD0lCrIsCDBBQBQVI3CBRlQqTpQU_DLPPJ9VKdU1uklpBwCVYtUIrZfh00SX8Ox9RXxn6tY7nHw8-dj6lLBtw9Fh7zYeH1rTNyHuE84VG2t966Ppt90Gz6frCT5tnQ_YBpc3t-iqMW3yd799jFYv0-VkThZvs9fJ84JYJkRPpDXgmJGubgAYFF650homijxTa6EWtbcgC84AGnDcqaJURVWXkkkqSsvH6GHIPcTwcfSp17twjF1-qTllgpUZDmQVG1Q2hpSib_QhbvcmfmkK-sxPD_x05qd_-OmziQ-mlMXdxse_6H9c348AcjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280070</pqid></control><display><type>article</type><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><source>Springer Nature</source><creator>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</creator><creatorcontrib>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</creatorcontrib><description>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04692-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Cloud computing ; Codec ; Coding ; Computer centers ; Computer Communication Networks ; Computer Science ; Concurrency control ; Consumption ; Data integrity ; Efficiency ; Flexibility ; Graphics processing units ; Infrastructure ; Multimedia ; Operating Systems ; Processor Architectures ; Resource allocation ; Software services ; Streaming media ; Streaming services ; Video compression ; Virtual environments</subject><ispartof>Cluster computing, 2025-02, Vol.28 (1), p.68, Article 68</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</cites><orcidid>0009-0000-0347-7996 ; 0000-0001-5527-8091 ; 0000-0002-9617-3453 ; 0000-0003-2590-6370 ; 0000-0003-2771-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Salcedo-Navarro, Andoni</creatorcontrib><creatorcontrib>Peña-Ortiz, Raúl</creatorcontrib><creatorcontrib>Claver, Jose M.</creatorcontrib><creatorcontrib>Garcia-Pineda, Miguel</creatorcontrib><creatorcontrib>Gutiérrez-Aguado, Juan</creatorcontrib><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</description><subject>Automation</subject><subject>Cloud computing</subject><subject>Codec</subject><subject>Coding</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Concurrency control</subject><subject>Consumption</subject><subject>Data integrity</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Graphics processing units</subject><subject>Infrastructure</subject><subject>Multimedia</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Resource allocation</subject><subject>Software services</subject><subject>Streaming media</subject><subject>Streaming services</subject><subject>Video compression</subject><subject>Virtual environments</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tyb7N7lFJboaCHtteQTbKlZbupybbitzd1BW9eZoaZ997AD6F7Co8UQD0lCrIsCDBBQBQVI3CBRlQqTpQU_DLPPJ9VKdU1uklpBwCVYtUIrZfh00SX8Ox9RXxn6tY7nHw8-dj6lLBtw9Fh7zYeH1rTNyHuE84VG2t966Ppt90Gz6frCT5tnQ_YBpc3t-iqMW3yd799jFYv0-VkThZvs9fJ84JYJkRPpDXgmJGubgAYFF650homijxTa6EWtbcgC84AGnDcqaJURVWXkkkqSsvH6GHIPcTwcfSp17twjF1-qTllgpUZDmQVG1Q2hpSib_QhbvcmfmkK-sxPD_x05qd_-OmziQ-mlMXdxse_6H9c348AcjM</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Salcedo-Navarro, Andoni</creator><creator>Peña-Ortiz, Raúl</creator><creator>Claver, Jose M.</creator><creator>Garcia-Pineda, Miguel</creator><creator>Gutiérrez-Aguado, Juan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0000-0347-7996</orcidid><orcidid>https://orcid.org/0000-0001-5527-8091</orcidid><orcidid>https://orcid.org/0000-0002-9617-3453</orcidid><orcidid>https://orcid.org/0000-0003-2590-6370</orcidid><orcidid>https://orcid.org/0000-0003-2771-4073</orcidid></search><sort><creationdate>20250201</creationdate><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><author>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Automation</topic><topic>Cloud computing</topic><topic>Codec</topic><topic>Coding</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Concurrency control</topic><topic>Consumption</topic><topic>Data integrity</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Graphics processing units</topic><topic>Infrastructure</topic><topic>Multimedia</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Resource allocation</topic><topic>Software services</topic><topic>Streaming media</topic><topic>Streaming services</topic><topic>Video compression</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Navarro, Andoni</creatorcontrib><creatorcontrib>Peña-Ortiz, Raúl</creatorcontrib><creatorcontrib>Claver, Jose M.</creatorcontrib><creatorcontrib>Garcia-Pineda, Miguel</creatorcontrib><creatorcontrib>Gutiérrez-Aguado, Juan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Navarro, Andoni</au><au>Peña-Ortiz, Raúl</au><au>Claver, Jose M.</au><au>Garcia-Pineda, Miguel</au><au>Gutiérrez-Aguado, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>28</volume><issue>1</issue><spage>68</spage><pages>68-</pages><artnum>68</artnum><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04692-0</doi><orcidid>https://orcid.org/0009-0000-0347-7996</orcidid><orcidid>https://orcid.org/0000-0001-5527-8091</orcidid><orcidid>https://orcid.org/0000-0002-9617-3453</orcidid><orcidid>https://orcid.org/0000-0003-2590-6370</orcidid><orcidid>https://orcid.org/0000-0003-2771-4073</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-7857
ispartof Cluster computing, 2025-02, Vol.28 (1), p.68, Article 68
issn 1386-7857
1573-7543
language eng
recordid cdi_proquest_journals_3124280070
source Springer Nature
subjects Automation
Cloud computing
Codec
Coding
Computer centers
Computer Communication Networks
Computer Science
Concurrency control
Consumption
Data integrity
Efficiency
Flexibility
Graphics processing units
Infrastructure
Multimedia
Operating Systems
Processor Architectures
Resource allocation
Software services
Streaming media
Streaming services
Video compression
Virtual environments
title Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20GPU-enabled%20serverless%20cloud%20edge%20platforms%20for%20accelerating%20HEVC%20video%20coding&rft.jtitle=Cluster%20computing&rft.au=Salcedo-Navarro,%20Andoni&rft.date=2025-02-01&rft.volume=28&rft.issue=1&rft.spage=68&rft.pages=68-&rft.artnum=68&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04692-0&rft_dat=%3Cproquest_cross%3E3124280070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124280070&rft_id=info:pmid/&rfr_iscdi=true