Loading…
Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding
Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel...
Saved in:
Published in: | Cluster computing 2025-02, Vol.28 (1), p.68, Article 68 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3 |
container_end_page | |
container_issue | 1 |
container_start_page | 68 |
container_title | Cluster computing |
container_volume | 28 |
creator | Salcedo-Navarro, Andoni Peña-Ortiz, Raúl Claver, Jose M. Garcia-Pineda, Miguel Gutiérrez-Aguado, Juan |
description | Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process. |
doi_str_mv | 10.1007/s10586-024-04692-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3124280070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124280070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tyb7N7lFJboaCHtteQTbKlZbupybbitzd1BW9eZoaZ997AD6F7Co8UQD0lCrIsCDBBQBQVI3CBRlQqTpQU_DLPPJ9VKdU1uklpBwCVYtUIrZfh00SX8Ox9RXxn6tY7nHw8-dj6lLBtw9Fh7zYeH1rTNyHuE84VG2t966Ppt90Gz6frCT5tnQ_YBpc3t-iqMW3yd799jFYv0-VkThZvs9fJ84JYJkRPpDXgmJGubgAYFF650homijxTa6EWtbcgC84AGnDcqaJURVWXkkkqSsvH6GHIPcTwcfSp17twjF1-qTllgpUZDmQVG1Q2hpSib_QhbvcmfmkK-sxPD_x05qd_-OmziQ-mlMXdxse_6H9c348AcjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124280070</pqid></control><display><type>article</type><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><source>Springer Nature</source><creator>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</creator><creatorcontrib>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</creatorcontrib><description>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</description><identifier>ISSN: 1386-7857</identifier><identifier>EISSN: 1573-7543</identifier><identifier>DOI: 10.1007/s10586-024-04692-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automation ; Cloud computing ; Codec ; Coding ; Computer centers ; Computer Communication Networks ; Computer Science ; Concurrency control ; Consumption ; Data integrity ; Efficiency ; Flexibility ; Graphics processing units ; Infrastructure ; Multimedia ; Operating Systems ; Processor Architectures ; Resource allocation ; Software services ; Streaming media ; Streaming services ; Video compression ; Virtual environments</subject><ispartof>Cluster computing, 2025-02, Vol.28 (1), p.68, Article 68</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</cites><orcidid>0009-0000-0347-7996 ; 0000-0001-5527-8091 ; 0000-0002-9617-3453 ; 0000-0003-2590-6370 ; 0000-0003-2771-4073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Salcedo-Navarro, Andoni</creatorcontrib><creatorcontrib>Peña-Ortiz, Raúl</creatorcontrib><creatorcontrib>Claver, Jose M.</creatorcontrib><creatorcontrib>Garcia-Pineda, Miguel</creatorcontrib><creatorcontrib>Gutiérrez-Aguado, Juan</creatorcontrib><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><title>Cluster computing</title><addtitle>Cluster Comput</addtitle><description>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</description><subject>Automation</subject><subject>Cloud computing</subject><subject>Codec</subject><subject>Coding</subject><subject>Computer centers</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Concurrency control</subject><subject>Consumption</subject><subject>Data integrity</subject><subject>Efficiency</subject><subject>Flexibility</subject><subject>Graphics processing units</subject><subject>Infrastructure</subject><subject>Multimedia</subject><subject>Operating Systems</subject><subject>Processor Architectures</subject><subject>Resource allocation</subject><subject>Software services</subject><subject>Streaming media</subject><subject>Streaming services</subject><subject>Video compression</subject><subject>Virtual environments</subject><issn>1386-7857</issn><issn>1573-7543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3Tyb7N7lFJboaCHtteQTbKlZbupybbitzd1BW9eZoaZ997AD6F7Co8UQD0lCrIsCDBBQBQVI3CBRlQqTpQU_DLPPJ9VKdU1uklpBwCVYtUIrZfh00SX8Ox9RXxn6tY7nHw8-dj6lLBtw9Fh7zYeH1rTNyHuE84VG2t966Ppt90Gz6frCT5tnQ_YBpc3t-iqMW3yd799jFYv0-VkThZvs9fJ84JYJkRPpDXgmJGubgAYFF650homijxTa6EWtbcgC84AGnDcqaJURVWXkkkqSsvH6GHIPcTwcfSp17twjF1-qTllgpUZDmQVG1Q2hpSib_QhbvcmfmkK-sxPD_x05qd_-OmziQ-mlMXdxse_6H9c348AcjM</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Salcedo-Navarro, Andoni</creator><creator>Peña-Ortiz, Raúl</creator><creator>Claver, Jose M.</creator><creator>Garcia-Pineda, Miguel</creator><creator>Gutiérrez-Aguado, Juan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0009-0000-0347-7996</orcidid><orcidid>https://orcid.org/0000-0001-5527-8091</orcidid><orcidid>https://orcid.org/0000-0002-9617-3453</orcidid><orcidid>https://orcid.org/0000-0003-2590-6370</orcidid><orcidid>https://orcid.org/0000-0003-2771-4073</orcidid></search><sort><creationdate>20250201</creationdate><title>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</title><author>Salcedo-Navarro, Andoni ; Peña-Ortiz, Raúl ; Claver, Jose M. ; Garcia-Pineda, Miguel ; Gutiérrez-Aguado, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Automation</topic><topic>Cloud computing</topic><topic>Codec</topic><topic>Coding</topic><topic>Computer centers</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Concurrency control</topic><topic>Consumption</topic><topic>Data integrity</topic><topic>Efficiency</topic><topic>Flexibility</topic><topic>Graphics processing units</topic><topic>Infrastructure</topic><topic>Multimedia</topic><topic>Operating Systems</topic><topic>Processor Architectures</topic><topic>Resource allocation</topic><topic>Software services</topic><topic>Streaming media</topic><topic>Streaming services</topic><topic>Video compression</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Navarro, Andoni</creatorcontrib><creatorcontrib>Peña-Ortiz, Raúl</creatorcontrib><creatorcontrib>Claver, Jose M.</creatorcontrib><creatorcontrib>Garcia-Pineda, Miguel</creatorcontrib><creatorcontrib>Gutiérrez-Aguado, Juan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cluster computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Navarro, Andoni</au><au>Peña-Ortiz, Raúl</au><au>Claver, Jose M.</au><au>Garcia-Pineda, Miguel</au><au>Gutiérrez-Aguado, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding</atitle><jtitle>Cluster computing</jtitle><stitle>Cluster Comput</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>28</volume><issue>1</issue><spage>68</spage><pages>68-</pages><artnum>68</artnum><issn>1386-7857</issn><eissn>1573-7543</eissn><abstract>Multimedia streaming has become integral to modern living, reshaping entertainment consumption, information access, and global engagement. The ascent of cloud computing, particularly serverless architectures, plays a pivotal role in this transformation, offering dynamic resource allocation, parallel execution, and automatic scaling-especially beneficial in HTTP Adaptive Streaming (HAS) applications. This study presents an event-driven serverless cloud edge platform with graphics processing units (GPUs), managed by Knative, tailored for video encoding. Two implementations of the High Efficiency Video Coding (HEVC) codec have been encapsulated in the functions: HEVC NVENC (Nvidia Encoder), that uses GPU acceleration, and x265 that only uses CPUs. Experiments focused on measuring the impact of replica requested resources on cold start, scalability and resource consumption with different allocated resources on slim and fat virtual machines (VMs). The best results are obtained when four slim replicas of the functions are deployed on a fat VM with a 8.4% reduction in encoding time for x265 and a 15.2% improvement for HEVC NVENC compared with other deployment scenarios. Comparatively, HEVC NVENC encoding is 8.3 times faster than x265. In multiresolution scenarios, GPU encoding drastically reduces segment encoding time by a factor of 12.4 between non-GPU and GPU-accelerated. These findings are important for live streaming applications where low latency is critical at all stages of the streaming process.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10586-024-04692-0</doi><orcidid>https://orcid.org/0009-0000-0347-7996</orcidid><orcidid>https://orcid.org/0000-0001-5527-8091</orcidid><orcidid>https://orcid.org/0000-0002-9617-3453</orcidid><orcidid>https://orcid.org/0000-0003-2590-6370</orcidid><orcidid>https://orcid.org/0000-0003-2771-4073</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-7857 |
ispartof | Cluster computing, 2025-02, Vol.28 (1), p.68, Article 68 |
issn | 1386-7857 1573-7543 |
language | eng |
recordid | cdi_proquest_journals_3124280070 |
source | Springer Nature |
subjects | Automation Cloud computing Codec Coding Computer centers Computer Communication Networks Computer Science Concurrency control Consumption Data integrity Efficiency Flexibility Graphics processing units Infrastructure Multimedia Operating Systems Processor Architectures Resource allocation Software services Streaming media Streaming services Video compression Virtual environments |
title | Towards GPU-enabled serverless cloud edge platforms for accelerating HEVC video coding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A45%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20GPU-enabled%20serverless%20cloud%20edge%20platforms%20for%20accelerating%20HEVC%20video%20coding&rft.jtitle=Cluster%20computing&rft.au=Salcedo-Navarro,%20Andoni&rft.date=2025-02-01&rft.volume=28&rft.issue=1&rft.spage=68&rft.pages=68-&rft.artnum=68&rft.issn=1386-7857&rft.eissn=1573-7543&rft_id=info:doi/10.1007/s10586-024-04692-0&rft_dat=%3Cproquest_cross%3E3124280070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c244t-5ca0d2a5dbf00206e7d8ca2462061cc0b4bec0563200f0d3d768769b8525148c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124280070&rft_id=info:pmid/&rfr_iscdi=true |