Loading…

PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text

While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-spe...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Bang, Hayeon, Choi, Eunjin, Finch, Megan, Doh, Seungheon, Lee, Seolhee, Lee, Gyeong-Hoon, Nam, Juhan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bang, Hayeon
Choi, Eunjin
Finch, Megan
Doh, Seungheon
Lee, Seolhee
Lee, Gyeong-Hoon
Nam, Juhan
description While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-specific taxonomy of semantic tags, we collected 9,673 tracks from YouTube and added human annotations for 2,023 tracks by music experts, resulting in two subsets: PIAST-YT and PIAST-AT. Both include audio, text, tag annotations, and transcribed MIDI utilizing state-of-the-art piano transcription and beat tracking models. Among many possible tasks with the multi-modal dataset, we conduct music tagging and retrieval using both audio and MIDI data and report baseline performances to demonstrate its potential as a valuable resource for MIR research.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3124858661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3124858661</sourcerecordid><originalsourceid>FETCH-proquest_journals_31248586613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD_B0DA6xUnBU8C3NKcnMzU9JzFEIyEzMy1dwSSxJLE4tUSjPLMlQcCxNyczXUQiuzE3Kz8lMVkjMS1EISa0o4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDIxMLUwszM0Nj4lQBABS7NwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124858661</pqid></control><display><type>article</type><title>PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text</title><source>Publicly Available Content Database</source><creator>Bang, Hayeon ; Choi, Eunjin ; Finch, Megan ; Doh, Seungheon ; Lee, Seolhee ; Lee, Gyeong-Hoon ; Nam, Juhan</creator><creatorcontrib>Bang, Hayeon ; Choi, Eunjin ; Finch, Megan ; Doh, Seungheon ; Lee, Seolhee ; Lee, Gyeong-Hoon ; Nam, Juhan</creatorcontrib><description>While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-specific taxonomy of semantic tags, we collected 9,673 tracks from YouTube and added human annotations for 2,023 tracks by music experts, resulting in two subsets: PIAST-YT and PIAST-AT. Both include audio, text, tag annotations, and transcribed MIDI utilizing state-of-the-art piano transcription and beat tracking models. Among many possible tasks with the multi-modal dataset, we conduct music tagging and retrieval using both audio and MIDI data and report baseline performances to demonstrate its potential as a valuable resource for MIR research.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Audio data ; Datasets ; Information retrieval ; Music ; Pianos ; Taxonomy</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3124858661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Bang, Hayeon</creatorcontrib><creatorcontrib>Choi, Eunjin</creatorcontrib><creatorcontrib>Finch, Megan</creatorcontrib><creatorcontrib>Doh, Seungheon</creatorcontrib><creatorcontrib>Lee, Seolhee</creatorcontrib><creatorcontrib>Lee, Gyeong-Hoon</creatorcontrib><creatorcontrib>Nam, Juhan</creatorcontrib><title>PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text</title><title>arXiv.org</title><description>While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-specific taxonomy of semantic tags, we collected 9,673 tracks from YouTube and added human annotations for 2,023 tracks by music experts, resulting in two subsets: PIAST-YT and PIAST-AT. Both include audio, text, tag annotations, and transcribed MIDI utilizing state-of-the-art piano transcription and beat tracking models. Among many possible tasks with the multi-modal dataset, we conduct music tagging and retrieval using both audio and MIDI data and report baseline performances to demonstrate its potential as a valuable resource for MIR research.</description><subject>Annotations</subject><subject>Audio data</subject><subject>Datasets</subject><subject>Information retrieval</subject><subject>Music</subject><subject>Pianos</subject><subject>Taxonomy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwD_B0DA6xUnBU8C3NKcnMzU9JzFEIyEzMy1dwSSxJLE4tUSjPLMlQcCxNyczXUQiuzE3Kz8lMVkjMS1EISa0o4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDIxMLUwszM0Nj4lQBABS7NwE</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Bang, Hayeon</creator><creator>Choi, Eunjin</creator><creator>Finch, Megan</creator><creator>Doh, Seungheon</creator><creator>Lee, Seolhee</creator><creator>Lee, Gyeong-Hoon</creator><creator>Nam, Juhan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241107</creationdate><title>PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text</title><author>Bang, Hayeon ; Choi, Eunjin ; Finch, Megan ; Doh, Seungheon ; Lee, Seolhee ; Lee, Gyeong-Hoon ; Nam, Juhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31248586613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Audio data</topic><topic>Datasets</topic><topic>Information retrieval</topic><topic>Music</topic><topic>Pianos</topic><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Bang, Hayeon</creatorcontrib><creatorcontrib>Choi, Eunjin</creatorcontrib><creatorcontrib>Finch, Megan</creatorcontrib><creatorcontrib>Doh, Seungheon</creatorcontrib><creatorcontrib>Lee, Seolhee</creatorcontrib><creatorcontrib>Lee, Gyeong-Hoon</creatorcontrib><creatorcontrib>Nam, Juhan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bang, Hayeon</au><au>Choi, Eunjin</au><au>Finch, Megan</au><au>Doh, Seungheon</au><au>Lee, Seolhee</au><au>Lee, Gyeong-Hoon</au><au>Nam, Juhan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text</atitle><jtitle>arXiv.org</jtitle><date>2024-11-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>While piano music has become a significant area of study in Music Information Retrieval (MIR), there is a notable lack of datasets for piano solo music with text labels. To address this gap, we present PIAST (PIano dataset with Audio, Symbolic, and Text), a piano music dataset. Utilizing a piano-specific taxonomy of semantic tags, we collected 9,673 tracks from YouTube and added human annotations for 2,023 tracks by music experts, resulting in two subsets: PIAST-YT and PIAST-AT. Both include audio, text, tag annotations, and transcribed MIDI utilizing state-of-the-art piano transcription and beat tracking models. Among many possible tasks with the multi-modal dataset, we conduct music tagging and retrieval using both audio and MIDI data and report baseline performances to demonstrate its potential as a valuable resource for MIR research.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3124858661
source Publicly Available Content Database
subjects Annotations
Audio data
Datasets
Information retrieval
Music
Pianos
Taxonomy
title PIAST: A Multimodal Piano Dataset with Audio, Symbolic and Text
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PIAST:%20A%20Multimodal%20Piano%20Dataset%20with%20Audio,%20Symbolic%20and%20Text&rft.jtitle=arXiv.org&rft.au=Bang,%20Hayeon&rft.date=2024-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3124858661%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31248586613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3124858661&rft_id=info:pmid/&rfr_iscdi=true