Loading…

Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis

Prognostics and health management of general rotating machinery have been studied over time to improve system stability. Recently, the excellent abnormal diagnosis performance of artificial intelligence (AI) was demonstrated, and therefore, AI-based intelligent diagnosis is now being implemented in...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2024-11, Vol.13 (21), p.4253
Main Authors: Lee, Seokchae, Jeong, Hoejun, Kwon, Jangwoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c196t-ee09455a46916d02565d05441bfc0f6d8bf5cf405c22ca0d6637606105a9617e3
container_end_page
container_issue 21
container_start_page 4253
container_title Electronics (Basel)
container_volume 13
creator Lee, Seokchae
Jeong, Hoejun
Kwon, Jangwoo
description Prognostics and health management of general rotating machinery have been studied over time to improve system stability. Recently, the excellent abnormal diagnosis performance of artificial intelligence (AI) was demonstrated, and therefore, AI-based intelligent diagnosis is now being implemented in these systems. AI models are trained using large volumes of data. Therefore, we propose a transformer-based generative adversarial network (GAN) model with a multi-resolution short-time Fourier transform (multi-STFT) loss function to augment the vibration data of rotating machinery to facilitate the successful learning of deep learning models. We constructed a model with a conditional GAN structure, which is transformer based, for learning the feature points of vibration data in the time-series domain. In addition, we applied the multi-STFT loss function to capture the frequency features of the vibration data. The generated data, which adequately captured the frequency features, were used to augment the training data to improve the performance of a deep learning classifier. Furthermore, by visualizing the generated vibration data and comparing the visualizations to those of the vibration data obtained from real machinery, we demonstrated that the generated data were indistinguishable from the actual data.
doi_str_mv 10.3390/electronics13214253
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126024579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815344706</galeid><sourcerecordid>A815344706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c196t-ee09455a46916d02565d05441bfc0f6d8bf5cf405c22ca0d6637606105a9617e3</originalsourceid><addsrcrecordid>eNptkE9LAzEQxRdRsNR-Ai8Bz1vzf5vjWm0VWgVdvS5pNmlTtklNUqTf3kg9eHDmMMPj94bhFcU1gmNCBLzVvVYpeGdVRAQjihk5KwYYVqIUWODzP_tlMYpxC3MJRCYEDoqmCdJF48NOh_JORt2Bef0MvmzagOWhT7Z8a2YNyAB49Ukm69ZgKdXGOh2O4MOuQta8A_cySVA72R-jjVfFhZF91KPfOSzeZw_N9LFcvMyfpvWiVEjwVGoNBWVMUi4Q7yBmnHWQUYpWRkHDu8nKMGUoZApjJWHHOak45AgyKTiqNBkWN6e7--A_DzqmdusPIT8RW4Iwh5iySmRqfKLWstetdcanIFXuTu-s8k4bm_V6ghihtII8G8jJoIKPMWjT7oPdyXBsEWx_Im__iZx8A9P1dXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126024579</pqid></control><display><type>article</type><title>Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Lee, Seokchae ; Jeong, Hoejun ; Kwon, Jangwoo</creator><creatorcontrib>Lee, Seokchae ; Jeong, Hoejun ; Kwon, Jangwoo</creatorcontrib><description>Prognostics and health management of general rotating machinery have been studied over time to improve system stability. Recently, the excellent abnormal diagnosis performance of artificial intelligence (AI) was demonstrated, and therefore, AI-based intelligent diagnosis is now being implemented in these systems. AI models are trained using large volumes of data. Therefore, we propose a transformer-based generative adversarial network (GAN) model with a multi-resolution short-time Fourier transform (multi-STFT) loss function to augment the vibration data of rotating machinery to facilitate the successful learning of deep learning models. We constructed a model with a conditional GAN structure, which is transformer based, for learning the feature points of vibration data in the time-series domain. In addition, we applied the multi-STFT loss function to capture the frequency features of the vibration data. The generated data, which adequately captured the frequency features, were used to augment the training data to improve the performance of a deep learning classifier. Furthermore, by visualizing the generated vibration data and comparing the visualizations to those of the vibration data obtained from real machinery, we demonstrated that the generated data were indistinguishable from the actual data.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13214253</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Computational linguistics ; Data analysis ; Datasets ; Deep learning ; Diagnosis ; Electric transformers ; Fourier transforms ; Generative adversarial networks ; Language processing ; Liquors ; Machine learning ; Machinery ; Natural language interfaces ; Natural language processing ; Neural networks ; Performance enhancement ; Rotating machinery ; Systems stability ; Vibration ; Vibration analysis</subject><ispartof>Electronics (Basel), 2024-11, Vol.13 (21), p.4253</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c196t-ee09455a46916d02565d05441bfc0f6d8bf5cf405c22ca0d6637606105a9617e3</cites><orcidid>0000-0003-2097-557X ; 0000-0001-6233-6878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126024579/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126024579?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Lee, Seokchae</creatorcontrib><creatorcontrib>Jeong, Hoejun</creatorcontrib><creatorcontrib>Kwon, Jangwoo</creatorcontrib><title>Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis</title><title>Electronics (Basel)</title><description>Prognostics and health management of general rotating machinery have been studied over time to improve system stability. Recently, the excellent abnormal diagnosis performance of artificial intelligence (AI) was demonstrated, and therefore, AI-based intelligent diagnosis is now being implemented in these systems. AI models are trained using large volumes of data. Therefore, we propose a transformer-based generative adversarial network (GAN) model with a multi-resolution short-time Fourier transform (multi-STFT) loss function to augment the vibration data of rotating machinery to facilitate the successful learning of deep learning models. We constructed a model with a conditional GAN structure, which is transformer based, for learning the feature points of vibration data in the time-series domain. In addition, we applied the multi-STFT loss function to capture the frequency features of the vibration data. The generated data, which adequately captured the frequency features, were used to augment the training data to improve the performance of a deep learning classifier. Furthermore, by visualizing the generated vibration data and comparing the visualizations to those of the vibration data obtained from real machinery, we demonstrated that the generated data were indistinguishable from the actual data.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Electric transformers</subject><subject>Fourier transforms</subject><subject>Generative adversarial networks</subject><subject>Language processing</subject><subject>Liquors</subject><subject>Machine learning</subject><subject>Machinery</subject><subject>Natural language interfaces</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Performance enhancement</subject><subject>Rotating machinery</subject><subject>Systems stability</subject><subject>Vibration</subject><subject>Vibration analysis</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkE9LAzEQxRdRsNR-Ai8Bz1vzf5vjWm0VWgVdvS5pNmlTtklNUqTf3kg9eHDmMMPj94bhFcU1gmNCBLzVvVYpeGdVRAQjihk5KwYYVqIUWODzP_tlMYpxC3MJRCYEDoqmCdJF48NOh_JORt2Bef0MvmzagOWhT7Z8a2YNyAB49Ukm69ZgKdXGOh2O4MOuQta8A_cySVA72R-jjVfFhZF91KPfOSzeZw_N9LFcvMyfpvWiVEjwVGoNBWVMUi4Q7yBmnHWQUYpWRkHDu8nKMGUoZApjJWHHOak45AgyKTiqNBkWN6e7--A_DzqmdusPIT8RW4Iwh5iySmRqfKLWstetdcanIFXuTu-s8k4bm_V6ghihtII8G8jJoIKPMWjT7oPdyXBsEWx_Im__iZx8A9P1dXA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lee, Seokchae</creator><creator>Jeong, Hoejun</creator><creator>Kwon, Jangwoo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2097-557X</orcidid><orcidid>https://orcid.org/0000-0001-6233-6878</orcidid></search><sort><creationdate>20241101</creationdate><title>Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis</title><author>Lee, Seokchae ; Jeong, Hoejun ; Kwon, Jangwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c196t-ee09455a46916d02565d05441bfc0f6d8bf5cf405c22ca0d6637606105a9617e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Electric transformers</topic><topic>Fourier transforms</topic><topic>Generative adversarial networks</topic><topic>Language processing</topic><topic>Liquors</topic><topic>Machine learning</topic><topic>Machinery</topic><topic>Natural language interfaces</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Performance enhancement</topic><topic>Rotating machinery</topic><topic>Systems stability</topic><topic>Vibration</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seokchae</creatorcontrib><creatorcontrib>Jeong, Hoejun</creatorcontrib><creatorcontrib>Kwon, Jangwoo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seokchae</au><au>Jeong, Hoejun</au><au>Kwon, Jangwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>13</volume><issue>21</issue><spage>4253</spage><pages>4253-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Prognostics and health management of general rotating machinery have been studied over time to improve system stability. Recently, the excellent abnormal diagnosis performance of artificial intelligence (AI) was demonstrated, and therefore, AI-based intelligent diagnosis is now being implemented in these systems. AI models are trained using large volumes of data. Therefore, we propose a transformer-based generative adversarial network (GAN) model with a multi-resolution short-time Fourier transform (multi-STFT) loss function to augment the vibration data of rotating machinery to facilitate the successful learning of deep learning models. We constructed a model with a conditional GAN structure, which is transformer based, for learning the feature points of vibration data in the time-series domain. In addition, we applied the multi-STFT loss function to capture the frequency features of the vibration data. The generated data, which adequately captured the frequency features, were used to augment the training data to improve the performance of a deep learning classifier. Furthermore, by visualizing the generated vibration data and comparing the visualizations to those of the vibration data obtained from real machinery, we demonstrated that the generated data were indistinguishable from the actual data.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13214253</doi><orcidid>https://orcid.org/0000-0003-2097-557X</orcidid><orcidid>https://orcid.org/0000-0001-6233-6878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-11, Vol.13 (21), p.4253
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3126024579
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Accuracy
Algorithms
Artificial intelligence
Computational linguistics
Data analysis
Datasets
Deep learning
Diagnosis
Electric transformers
Fourier transforms
Generative adversarial networks
Language processing
Liquors
Machine learning
Machinery
Natural language interfaces
Natural language processing
Neural networks
Performance enhancement
Rotating machinery
Systems stability
Vibration
Vibration analysis
title Transformer-Based GAN with Multi-STFT for Rotating Machinery Vibration Data Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transformer-Based%20GAN%20with%20Multi-STFT%20for%20Rotating%20Machinery%20Vibration%20Data%20Analysis&rft.jtitle=Electronics%20(Basel)&rft.au=Lee,%20Seokchae&rft.date=2024-11-01&rft.volume=13&rft.issue=21&rft.spage=4253&rft.pages=4253-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13214253&rft_dat=%3Cgale_proqu%3EA815344706%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c196t-ee09455a46916d02565d05441bfc0f6d8bf5cf405c22ca0d6637606105a9617e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126024579&rft_id=info:pmid/&rft_galeid=A815344706&rfr_iscdi=true