Loading…
Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices
This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external charac...
Saved in:
Published in: | Sustainability 2024-11, Vol.16 (21), p.9276 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663 |
container_end_page | |
container_issue | 21 |
container_start_page | 9276 |
container_title | Sustainability |
container_volume | 16 |
creator | Tynchenko, Vadim Kukartseva, Oksana Tynchenko, Yadviga Kukartsev, Vladislav Panfilova, Tatyana Kravtsov, Kirill Wu, Xiaogang Malashin, Ivan |
description | This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species. |
doi_str_mv | 10.3390/su16219276 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126073868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815422280</galeid><sourcerecordid>A815422280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhpfSQEySS36BoKcW7OjD0q56W0KbBAI1TXJeZrUjW2a9cvSRxv--Ci6kmTnM8PLMOwNTVZeMLoTQ9CpmpjjTvFafqhmnNZszKunn__rT6iLGLS0hBNNMzao_q4CDM8lNa_LoRtg7IKvgh1ykF5cOxE3kBn3aYNjBSFZ-GuJ30hZtwuQMace1Dy5tdqTd74MHsyHWB_KQYwI3QT8iaZ8zmDymHLBYQzE2GM-rEwtjxIt_9ax6-vnj8fp2fv_r5u66vZ8bLus0xyVqrijSnhllsYdmGJSwctC1BWZrbUWvZaNBskaikpIhsBq4XPZGS6XEWfXl6FuOe84YU7f1OUxlZSdYca5Fo5pCLY7UGkbs3GR9KoeWHHDnjJ_QuqK3DZNLznlDy8DXDwOFSfia1pBj7O4efn9kvx1ZE3yMAW23D24H4dAx2r09rnt_nPgLfQqKxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126073868</pqid></control><display><type>article</type><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><source>Publicly Available Content (ProQuest)</source><creator>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</creator><creatorcontrib>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</creatorcontrib><description>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16219276</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Algorithms ; Analysis ; Analytical chemistry ; Aquaculture ; Aquaculture industry ; Biological activity ; Carbon dioxide ; Energy consumption ; Fertility ; Fish-culture ; Genetic algorithms ; Genetic research ; Geothermal power ; Metabolism ; Neural networks ; Ponds ; Salinity ; Tilapia ; Water quality ; Water temperature</subject><ispartof>Sustainability, 2024-11, Vol.16 (21), p.9276</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</cites><orcidid>0000-0001-8963-7830 ; 0000-0002-3959-2969 ; 0000-0002-1830-0437 ; 0009-0008-8986-402X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126073868/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126073868?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tynchenko, Vadim</creatorcontrib><creatorcontrib>Kukartseva, Oksana</creatorcontrib><creatorcontrib>Tynchenko, Yadviga</creatorcontrib><creatorcontrib>Kukartsev, Vladislav</creatorcontrib><creatorcontrib>Panfilova, Tatyana</creatorcontrib><creatorcontrib>Kravtsov, Kirill</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Malashin, Ivan</creatorcontrib><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><title>Sustainability</title><description>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</description><subject>Adaptability</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical chemistry</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Biological activity</subject><subject>Carbon dioxide</subject><subject>Energy consumption</subject><subject>Fertility</subject><subject>Fish-culture</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Geothermal power</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Ponds</subject><subject>Salinity</subject><subject>Tilapia</subject><subject>Water quality</subject><subject>Water temperature</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1rGzEQhpfSQEySS36BoKcW7OjD0q56W0KbBAI1TXJeZrUjW2a9cvSRxv--Ci6kmTnM8PLMOwNTVZeMLoTQ9CpmpjjTvFafqhmnNZszKunn__rT6iLGLS0hBNNMzao_q4CDM8lNa_LoRtg7IKvgh1ykF5cOxE3kBn3aYNjBSFZ-GuJ30hZtwuQMace1Dy5tdqTd74MHsyHWB_KQYwI3QT8iaZ8zmDymHLBYQzE2GM-rEwtjxIt_9ax6-vnj8fp2fv_r5u66vZ8bLus0xyVqrijSnhllsYdmGJSwctC1BWZrbUWvZaNBskaikpIhsBq4XPZGS6XEWfXl6FuOe84YU7f1OUxlZSdYca5Fo5pCLY7UGkbs3GR9KoeWHHDnjJ_QuqK3DZNLznlDy8DXDwOFSfia1pBj7O4efn9kvx1ZE3yMAW23D24H4dAx2r09rnt_nPgLfQqKxg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Tynchenko, Vadim</creator><creator>Kukartseva, Oksana</creator><creator>Tynchenko, Yadviga</creator><creator>Kukartsev, Vladislav</creator><creator>Panfilova, Tatyana</creator><creator>Kravtsov, Kirill</creator><creator>Wu, Xiaogang</creator><creator>Malashin, Ivan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8963-7830</orcidid><orcidid>https://orcid.org/0000-0002-3959-2969</orcidid><orcidid>https://orcid.org/0000-0002-1830-0437</orcidid><orcidid>https://orcid.org/0009-0008-8986-402X</orcidid></search><sort><creationdate>20241101</creationdate><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><author>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical chemistry</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Biological activity</topic><topic>Carbon dioxide</topic><topic>Energy consumption</topic><topic>Fertility</topic><topic>Fish-culture</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Geothermal power</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Ponds</topic><topic>Salinity</topic><topic>Tilapia</topic><topic>Water quality</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tynchenko, Vadim</creatorcontrib><creatorcontrib>Kukartseva, Oksana</creatorcontrib><creatorcontrib>Tynchenko, Yadviga</creatorcontrib><creatorcontrib>Kukartsev, Vladislav</creatorcontrib><creatorcontrib>Panfilova, Tatyana</creatorcontrib><creatorcontrib>Kravtsov, Kirill</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Malashin, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tynchenko, Vadim</au><au>Kukartseva, Oksana</au><au>Tynchenko, Yadviga</au><au>Kukartsev, Vladislav</au><au>Panfilova, Tatyana</au><au>Kravtsov, Kirill</au><au>Wu, Xiaogang</au><au>Malashin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</atitle><jtitle>Sustainability</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>9276</spage><pages>9276-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16219276</doi><orcidid>https://orcid.org/0000-0001-8963-7830</orcidid><orcidid>https://orcid.org/0000-0002-3959-2969</orcidid><orcidid>https://orcid.org/0000-0002-1830-0437</orcidid><orcidid>https://orcid.org/0009-0008-8986-402X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-11, Vol.16 (21), p.9276 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3126073868 |
source | Publicly Available Content (ProQuest) |
subjects | Adaptability Algorithms Analysis Analytical chemistry Aquaculture Aquaculture industry Biological activity Carbon dioxide Energy consumption Fertility Fish-culture Genetic algorithms Genetic research Geothermal power Metabolism Neural networks Ponds Salinity Tilapia Water quality Water temperature |
title | Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Tilapia%20Productivity%20in%20Geothermal%20Ponds:%20A%20Genetic%20Algorithm%20Approach%20for%20Sustainable%20Aquaculture%20Practices&rft.jtitle=Sustainability&rft.au=Tynchenko,%20Vadim&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.spage=9276&rft.pages=9276-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16219276&rft_dat=%3Cgale_proqu%3EA815422280%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126073868&rft_id=info:pmid/&rft_galeid=A815422280&rfr_iscdi=true |