Loading…

Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices

This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external charac...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2024-11, Vol.16 (21), p.9276
Main Authors: Tynchenko, Vadim, Kukartseva, Oksana, Tynchenko, Yadviga, Kukartsev, Vladislav, Panfilova, Tatyana, Kravtsov, Kirill, Wu, Xiaogang, Malashin, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663
container_end_page
container_issue 21
container_start_page 9276
container_title Sustainability
container_volume 16
creator Tynchenko, Vadim
Kukartseva, Oksana
Tynchenko, Yadviga
Kukartsev, Vladislav
Panfilova, Tatyana
Kravtsov, Kirill
Wu, Xiaogang
Malashin, Ivan
description This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.
doi_str_mv 10.3390/su16219276
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3126073868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815422280</galeid><sourcerecordid>A815422280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhpfSQEySS36BoKcW7OjD0q56W0KbBAI1TXJeZrUjW2a9cvSRxv--Ci6kmTnM8PLMOwNTVZeMLoTQ9CpmpjjTvFafqhmnNZszKunn__rT6iLGLS0hBNNMzao_q4CDM8lNa_LoRtg7IKvgh1ykF5cOxE3kBn3aYNjBSFZ-GuJ30hZtwuQMace1Dy5tdqTd74MHsyHWB_KQYwI3QT8iaZ8zmDymHLBYQzE2GM-rEwtjxIt_9ax6-vnj8fp2fv_r5u66vZ8bLus0xyVqrijSnhllsYdmGJSwctC1BWZrbUWvZaNBskaikpIhsBq4XPZGS6XEWfXl6FuOe84YU7f1OUxlZSdYca5Fo5pCLY7UGkbs3GR9KoeWHHDnjJ_QuqK3DZNLznlDy8DXDwOFSfia1pBj7O4efn9kvx1ZE3yMAW23D24H4dAx2r09rnt_nPgLfQqKxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126073868</pqid></control><display><type>article</type><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><source>Publicly Available Content (ProQuest)</source><creator>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</creator><creatorcontrib>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</creatorcontrib><description>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16219276</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Algorithms ; Analysis ; Analytical chemistry ; Aquaculture ; Aquaculture industry ; Biological activity ; Carbon dioxide ; Energy consumption ; Fertility ; Fish-culture ; Genetic algorithms ; Genetic research ; Geothermal power ; Metabolism ; Neural networks ; Ponds ; Salinity ; Tilapia ; Water quality ; Water temperature</subject><ispartof>Sustainability, 2024-11, Vol.16 (21), p.9276</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</cites><orcidid>0000-0001-8963-7830 ; 0000-0002-3959-2969 ; 0000-0002-1830-0437 ; 0009-0008-8986-402X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126073868/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126073868?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Tynchenko, Vadim</creatorcontrib><creatorcontrib>Kukartseva, Oksana</creatorcontrib><creatorcontrib>Tynchenko, Yadviga</creatorcontrib><creatorcontrib>Kukartsev, Vladislav</creatorcontrib><creatorcontrib>Panfilova, Tatyana</creatorcontrib><creatorcontrib>Kravtsov, Kirill</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Malashin, Ivan</creatorcontrib><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><title>Sustainability</title><description>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</description><subject>Adaptability</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Analytical chemistry</subject><subject>Aquaculture</subject><subject>Aquaculture industry</subject><subject>Biological activity</subject><subject>Carbon dioxide</subject><subject>Energy consumption</subject><subject>Fertility</subject><subject>Fish-culture</subject><subject>Genetic algorithms</subject><subject>Genetic research</subject><subject>Geothermal power</subject><subject>Metabolism</subject><subject>Neural networks</subject><subject>Ponds</subject><subject>Salinity</subject><subject>Tilapia</subject><subject>Water quality</subject><subject>Water temperature</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkU1rGzEQhpfSQEySS36BoKcW7OjD0q56W0KbBAI1TXJeZrUjW2a9cvSRxv--Ci6kmTnM8PLMOwNTVZeMLoTQ9CpmpjjTvFafqhmnNZszKunn__rT6iLGLS0hBNNMzao_q4CDM8lNa_LoRtg7IKvgh1ykF5cOxE3kBn3aYNjBSFZ-GuJ30hZtwuQMace1Dy5tdqTd74MHsyHWB_KQYwI3QT8iaZ8zmDymHLBYQzE2GM-rEwtjxIt_9ax6-vnj8fp2fv_r5u66vZ8bLus0xyVqrijSnhllsYdmGJSwctC1BWZrbUWvZaNBskaikpIhsBq4XPZGS6XEWfXl6FuOe84YU7f1OUxlZSdYca5Fo5pCLY7UGkbs3GR9KoeWHHDnjJ_QuqK3DZNLznlDy8DXDwOFSfia1pBj7O4efn9kvx1ZE3yMAW23D24H4dAx2r09rnt_nPgLfQqKxg</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Tynchenko, Vadim</creator><creator>Kukartseva, Oksana</creator><creator>Tynchenko, Yadviga</creator><creator>Kukartsev, Vladislav</creator><creator>Panfilova, Tatyana</creator><creator>Kravtsov, Kirill</creator><creator>Wu, Xiaogang</creator><creator>Malashin, Ivan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8963-7830</orcidid><orcidid>https://orcid.org/0000-0002-3959-2969</orcidid><orcidid>https://orcid.org/0000-0002-1830-0437</orcidid><orcidid>https://orcid.org/0009-0008-8986-402X</orcidid></search><sort><creationdate>20241101</creationdate><title>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</title><author>Tynchenko, Vadim ; Kukartseva, Oksana ; Tynchenko, Yadviga ; Kukartsev, Vladislav ; Panfilova, Tatyana ; Kravtsov, Kirill ; Wu, Xiaogang ; Malashin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptability</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Analytical chemistry</topic><topic>Aquaculture</topic><topic>Aquaculture industry</topic><topic>Biological activity</topic><topic>Carbon dioxide</topic><topic>Energy consumption</topic><topic>Fertility</topic><topic>Fish-culture</topic><topic>Genetic algorithms</topic><topic>Genetic research</topic><topic>Geothermal power</topic><topic>Metabolism</topic><topic>Neural networks</topic><topic>Ponds</topic><topic>Salinity</topic><topic>Tilapia</topic><topic>Water quality</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tynchenko, Vadim</creatorcontrib><creatorcontrib>Kukartseva, Oksana</creatorcontrib><creatorcontrib>Tynchenko, Yadviga</creatorcontrib><creatorcontrib>Kukartsev, Vladislav</creatorcontrib><creatorcontrib>Panfilova, Tatyana</creatorcontrib><creatorcontrib>Kravtsov, Kirill</creatorcontrib><creatorcontrib>Wu, Xiaogang</creatorcontrib><creatorcontrib>Malashin, Ivan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tynchenko, Vadim</au><au>Kukartseva, Oksana</au><au>Tynchenko, Yadviga</au><au>Kukartsev, Vladislav</au><au>Panfilova, Tatyana</au><au>Kravtsov, Kirill</au><au>Wu, Xiaogang</au><au>Malashin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices</atitle><jtitle>Sustainability</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><spage>9276</spage><pages>9276-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>This study presents a case focused on sustainable farming practices, specifically the cultivation of tilapia (Mozambican and aureus species) in ponds with geothermal water. This research aims to optimize the hydrochemical regime of experimental ponds to enhance the growth metrics and external characteristics of tilapia breeders. The dataset encompasses the hydrochemical parameters and the fish feeding base from experimental geothermal ponds where tilapia were cultivated. Genetic algorithms (GA) were employed for hyperparameter optimization (HPO) of deep neural networks (DNN) to enhance the prediction of fish productivity in each pond under varying conditions, achieving an R2 score of 0.94. This GA-driven HPO process is a robust method for optimizing aquaculture practices by accurately predicting how different pond conditions and feed bases influence the productivity of tilapia. By accurately determining these factors, the model promotes sustainable practices, improving breeding outcomes and maximizing productivity in tilapia aquaculture. This approach can also be applied to other aquaculture systems, enhancing efficiency and sustainability across various species.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16219276</doi><orcidid>https://orcid.org/0000-0001-8963-7830</orcidid><orcidid>https://orcid.org/0000-0002-3959-2969</orcidid><orcidid>https://orcid.org/0000-0002-1830-0437</orcidid><orcidid>https://orcid.org/0009-0008-8986-402X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-11, Vol.16 (21), p.9276
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3126073868
source Publicly Available Content (ProQuest)
subjects Adaptability
Algorithms
Analysis
Analytical chemistry
Aquaculture
Aquaculture industry
Biological activity
Carbon dioxide
Energy consumption
Fertility
Fish-culture
Genetic algorithms
Genetic research
Geothermal power
Metabolism
Neural networks
Ponds
Salinity
Tilapia
Water quality
Water temperature
title Predicting Tilapia Productivity in Geothermal Ponds: A Genetic Algorithm Approach for Sustainable Aquaculture Practices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Tilapia%20Productivity%20in%20Geothermal%20Ponds:%20A%20Genetic%20Algorithm%20Approach%20for%20Sustainable%20Aquaculture%20Practices&rft.jtitle=Sustainability&rft.au=Tynchenko,%20Vadim&rft.date=2024-11-01&rft.volume=16&rft.issue=21&rft.spage=9276&rft.pages=9276-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16219276&rft_dat=%3Cgale_proqu%3EA815422280%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-e4e9260e0b1c6feba8dd63f5d97fa1f79f3b9589a5185e6551ea17a254bc95663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126073868&rft_id=info:pmid/&rft_galeid=A815422280&rfr_iscdi=true