Loading…
On the Rigour of Scientific Writing: Criteria, Analysis, and Insights
Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of...
Saved in:
Published in: | arXiv.org 2024-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Joseph, James Xiao, Chenghao Li, Yucheng Lin, Chenghua |
description | Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of scientific papers in practice. In this paper, we introduce a bottom-up, data-driven framework to automatically identify and define rigour criteria and assess their relevance in scientific writing. Our framework includes rigour keyword extraction, detailed rigour definition generation, and salient criteria identification. Furthermore, our framework is domain-agnostic and can be tailored to the evaluation of scientific rigour for different areas, accommodating the distinct salient criteria across fields. We conducted comprehensive experiments based on datasets collected from two high impact venues for Machine Learning and NLP (i.e., ICLR and ACL) to demonstrate the effectiveness of our framework in modelling rigour. In addition, we analyse linguistic patterns of rigour, revealing that framing certainty is crucial for enhancing the perception of scientific rigour, while suggestion certainty and probability uncertainty diminish it. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126167318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126167318</sourcerecordid><originalsourceid>FETCH-proquest_journals_31261673183</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvcMG1hSaxP7hJqegkqOBYQk3aW0qqueng29vBB3D6znDOt2CBkJLHxU6IFQuJ-iRJRJaLNJUBqy4WfKfhiu04ORgN3BrU1qPBBh4OPdp2D-UM2qGK4GDV8CGkCJR9wtkStp2nDVsaNZAOf7tm22N1L0_xy43vSZOv-_l9TqmWXGQ8yyUv5H_WF_qkOes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126167318</pqid></control><display><type>article</type><title>On the Rigour of Scientific Writing: Criteria, Analysis, and Insights</title><source>Publicly Available Content Database</source><creator>Joseph, James ; Xiao, Chenghao ; Li, Yucheng ; Lin, Chenghua</creator><creatorcontrib>Joseph, James ; Xiao, Chenghao ; Li, Yucheng ; Lin, Chenghua</creatorcontrib><description>Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of scientific papers in practice. In this paper, we introduce a bottom-up, data-driven framework to automatically identify and define rigour criteria and assess their relevance in scientific writing. Our framework includes rigour keyword extraction, detailed rigour definition generation, and salient criteria identification. Furthermore, our framework is domain-agnostic and can be tailored to the evaluation of scientific rigour for different areas, accommodating the distinct salient criteria across fields. We conducted comprehensive experiments based on datasets collected from two high impact venues for Machine Learning and NLP (i.e., ICLR and ACL) to demonstrate the effectiveness of our framework in modelling rigour. In addition, we analyse linguistic patterns of rigour, revealing that framing certainty is crucial for enhancing the perception of scientific rigour, while suggestion certainty and probability uncertainty diminish it.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Criteria ; Information retrieval ; Machine learning ; Modelling ; Scientific validity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3126167318?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Xiao, Chenghao</creatorcontrib><creatorcontrib>Li, Yucheng</creatorcontrib><creatorcontrib>Lin, Chenghua</creatorcontrib><title>On the Rigour of Scientific Writing: Criteria, Analysis, and Insights</title><title>arXiv.org</title><description>Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of scientific papers in practice. In this paper, we introduce a bottom-up, data-driven framework to automatically identify and define rigour criteria and assess their relevance in scientific writing. Our framework includes rigour keyword extraction, detailed rigour definition generation, and salient criteria identification. Furthermore, our framework is domain-agnostic and can be tailored to the evaluation of scientific rigour for different areas, accommodating the distinct salient criteria across fields. We conducted comprehensive experiments based on datasets collected from two high impact venues for Machine Learning and NLP (i.e., ICLR and ACL) to demonstrate the effectiveness of our framework in modelling rigour. In addition, we analyse linguistic patterns of rigour, revealing that framing certainty is crucial for enhancing the perception of scientific rigour, while suggestion certainty and probability uncertainty diminish it.</description><subject>Criteria</subject><subject>Information retrieval</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Scientific validity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjL0KwjAURoMgWLTvcMG1hSaxP7hJqegkqOBYQk3aW0qqueng29vBB3D6znDOt2CBkJLHxU6IFQuJ-iRJRJaLNJUBqy4WfKfhiu04ORgN3BrU1qPBBh4OPdp2D-UM2qGK4GDV8CGkCJR9wtkStp2nDVsaNZAOf7tm22N1L0_xy43vSZOv-_l9TqmWXGQ8yyUv5H_WF_qkOes</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Joseph, James</creator><creator>Xiao, Chenghao</creator><creator>Li, Yucheng</creator><creator>Lin, Chenghua</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241107</creationdate><title>On the Rigour of Scientific Writing: Criteria, Analysis, and Insights</title><author>Joseph, James ; Xiao, Chenghao ; Li, Yucheng ; Lin, Chenghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31261673183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Criteria</topic><topic>Information retrieval</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Scientific validity</topic><toplevel>online_resources</toplevel><creatorcontrib>Joseph, James</creatorcontrib><creatorcontrib>Xiao, Chenghao</creatorcontrib><creatorcontrib>Li, Yucheng</creatorcontrib><creatorcontrib>Lin, Chenghua</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joseph, James</au><au>Xiao, Chenghao</au><au>Li, Yucheng</au><au>Lin, Chenghua</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Rigour of Scientific Writing: Criteria, Analysis, and Insights</atitle><jtitle>arXiv.org</jtitle><date>2024-11-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Rigour is crucial for scientific research as it ensures the reproducibility and validity of results and findings. Despite its importance, little work exists on modelling rigour computationally, and there is a lack of analysis on whether these criteria can effectively signal or measure the rigour of scientific papers in practice. In this paper, we introduce a bottom-up, data-driven framework to automatically identify and define rigour criteria and assess their relevance in scientific writing. Our framework includes rigour keyword extraction, detailed rigour definition generation, and salient criteria identification. Furthermore, our framework is domain-agnostic and can be tailored to the evaluation of scientific rigour for different areas, accommodating the distinct salient criteria across fields. We conducted comprehensive experiments based on datasets collected from two high impact venues for Machine Learning and NLP (i.e., ICLR and ACL) to demonstrate the effectiveness of our framework in modelling rigour. In addition, we analyse linguistic patterns of rigour, revealing that framing certainty is crucial for enhancing the perception of scientific rigour, while suggestion certainty and probability uncertainty diminish it.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3126167318 |
source | Publicly Available Content Database |
subjects | Criteria Information retrieval Machine learning Modelling Scientific validity |
title | On the Rigour of Scientific Writing: Criteria, Analysis, and Insights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Rigour%20of%20Scientific%20Writing:%20Criteria,%20Analysis,%20and%20Insights&rft.jtitle=arXiv.org&rft.au=Joseph,%20James&rft.date=2024-11-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3126167318%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31261673183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126167318&rft_id=info:pmid/&rfr_iscdi=true |