Loading…

High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst

Direct synthesis of liquid fuel (C 5+ hydrocarbons) through CO 2 hydrogenation has attracted considerable interest. However, it is plagued by high selectivity of C 1 by-products (CO and CH 4 ) and low reaction activity. Herein, we report that Na-FeZn catalysts promoted by a combination of metal addi...

Full description

Saved in:
Bibliographic Details
Published in:Catalysis letters 2025, Vol.155 (1), p.2, Article 2
Main Authors: Zhang, Tong, Li, Zhongrui, Qiu, Juan, Bai, Jing, Cao, Baowei, Xu, Shihang, Wang, Hanying, Xu, Yunhua, Guo, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-e87fe7039f76c2b6971e4db967098727dc5464c2fcba932edca0cdd5ca853e373
container_end_page
container_issue 1
container_start_page 2
container_title Catalysis letters
container_volume 155
creator Zhang, Tong
Li, Zhongrui
Qiu, Juan
Bai, Jing
Cao, Baowei
Xu, Shihang
Wang, Hanying
Xu, Yunhua
Guo, Lei
description Direct synthesis of liquid fuel (C 5+ hydrocarbons) through CO 2 hydrogenation has attracted considerable interest. However, it is plagued by high selectivity of C 1 by-products (CO and CH 4 ) and low reaction activity. Herein, we report that Na-FeZn catalysts promoted by a combination of metal additives and investigate their synergistic effect in the catalytic CO 2 hydrogenation reaction. The CO 2 conversion is high to 40.6% with the 68.3% C 5+ selectivity. The characteristic results reveal the specific surface area has a great influence on the catalytic performance. Furthermore, the synergistic effect of Mn in the catalyst enhances CO 2 adsorption while weakening H 2 adsorption, thus remarkably promoting the carbon chain growth and limiting the production of C 1 products. This study offers a promising approach to modulating the metal electronic environment and improving carbon efficiency for CO 2 hydrogenation reactions. Graphical Abstract We present a simple NaFeZnMn-S nanocatalyst that can effectively catalyze CO 2 hydrogenation to C 5+ hydrocarbons. The selectivity towards C 5+ hydrocarbons is as high as 68.3% at 40.6% CO 2 conversion.
doi_str_mv 10.1007/s10562-024-04869-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126228470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126228470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-e87fe7039f76c2b6971e4db967098727dc5464c2fcba932edca0cdd5ca853e373</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKtfwFPAc_QlaZvmKMVZYbqDCsNLyNJ0dtR2S9JBv72dFbx5eu_w___e44fQNYVbCiDuPIUkZQRYTCDOUknECZrRRDCSCbk6HXeglHDBVufowvstAEhB5QwVRb35xK-2sSbUhzoMOF8yXAyl6za21aHuWhw6vKj3fV3ieW8bvDxYh1_03H60zy3OddDN4MMlOqt04-3V74zQ-_zhLS_IYvn4lN8viGEAgdhMVFYAl5VIDVun4xc2LtcyFSAzwURpkjiNDavMWkvObGk0mLJMjM4SbrngEbqZuDvX7Xvrg9p2vWvHk4pTljKWxSM-QmxKGdd572yldq7-0m5QFNTRmJqMqdGY-jGmjmg-lfwYbjfW_aH_aX0DVOVtpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126228470</pqid></control><display><type>article</type><title>High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst</title><source>Springer Nature</source><creator>Zhang, Tong ; Li, Zhongrui ; Qiu, Juan ; Bai, Jing ; Cao, Baowei ; Xu, Shihang ; Wang, Hanying ; Xu, Yunhua ; Guo, Lei</creator><creatorcontrib>Zhang, Tong ; Li, Zhongrui ; Qiu, Juan ; Bai, Jing ; Cao, Baowei ; Xu, Shihang ; Wang, Hanying ; Xu, Yunhua ; Guo, Lei</creatorcontrib><description>Direct synthesis of liquid fuel (C 5+ hydrocarbons) through CO 2 hydrogenation has attracted considerable interest. However, it is plagued by high selectivity of C 1 by-products (CO and CH 4 ) and low reaction activity. Herein, we report that Na-FeZn catalysts promoted by a combination of metal additives and investigate their synergistic effect in the catalytic CO 2 hydrogenation reaction. The CO 2 conversion is high to 40.6% with the 68.3% C 5+ selectivity. The characteristic results reveal the specific surface area has a great influence on the catalytic performance. Furthermore, the synergistic effect of Mn in the catalyst enhances CO 2 adsorption while weakening H 2 adsorption, thus remarkably promoting the carbon chain growth and limiting the production of C 1 products. This study offers a promising approach to modulating the metal electronic environment and improving carbon efficiency for CO 2 hydrogenation reactions. Graphical Abstract We present a simple NaFeZnMn-S nanocatalyst that can effectively catalyze CO 2 hydrogenation to C 5+ hydrocarbons. The selectivity towards C 5+ hydrocarbons is as high as 68.3% at 40.6% CO 2 conversion.</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-024-04869-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adsorption ; Carbon dioxide ; Catalysis ; Catalysts ; Catalytic converters ; Chemical reactions ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Hydrocarbons ; Hydrogenation ; Industrial Chemistry/Chemical Engineering ; Liquid fuels ; Molecular chains ; Organometallic Chemistry ; Physical Chemistry ; Synergistic effect</subject><ispartof>Catalysis letters, 2025, Vol.155 (1), p.2, Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-e87fe7039f76c2b6971e4db967098727dc5464c2fcba932edca0cdd5ca853e373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Li, Zhongrui</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Cao, Baowei</creatorcontrib><creatorcontrib>Xu, Shihang</creatorcontrib><creatorcontrib>Wang, Hanying</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><title>High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>Direct synthesis of liquid fuel (C 5+ hydrocarbons) through CO 2 hydrogenation has attracted considerable interest. However, it is plagued by high selectivity of C 1 by-products (CO and CH 4 ) and low reaction activity. Herein, we report that Na-FeZn catalysts promoted by a combination of metal additives and investigate their synergistic effect in the catalytic CO 2 hydrogenation reaction. The CO 2 conversion is high to 40.6% with the 68.3% C 5+ selectivity. The characteristic results reveal the specific surface area has a great influence on the catalytic performance. Furthermore, the synergistic effect of Mn in the catalyst enhances CO 2 adsorption while weakening H 2 adsorption, thus remarkably promoting the carbon chain growth and limiting the production of C 1 products. This study offers a promising approach to modulating the metal electronic environment and improving carbon efficiency for CO 2 hydrogenation reactions. Graphical Abstract We present a simple NaFeZnMn-S nanocatalyst that can effectively catalyze CO 2 hydrogenation to C 5+ hydrocarbons. The selectivity towards C 5+ hydrocarbons is as high as 68.3% at 40.6% CO 2 conversion.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Hydrocarbons</subject><subject>Hydrogenation</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Liquid fuels</subject><subject>Molecular chains</subject><subject>Organometallic Chemistry</subject><subject>Physical Chemistry</subject><subject>Synergistic effect</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKtfwFPAc_QlaZvmKMVZYbqDCsNLyNJ0dtR2S9JBv72dFbx5eu_w___e44fQNYVbCiDuPIUkZQRYTCDOUknECZrRRDCSCbk6HXeglHDBVufowvstAEhB5QwVRb35xK-2sSbUhzoMOF8yXAyl6za21aHuWhw6vKj3fV3ieW8bvDxYh1_03H60zy3OddDN4MMlOqt04-3V74zQ-_zhLS_IYvn4lN8viGEAgdhMVFYAl5VIDVun4xc2LtcyFSAzwURpkjiNDavMWkvObGk0mLJMjM4SbrngEbqZuDvX7Xvrg9p2vWvHk4pTljKWxSM-QmxKGdd572yldq7-0m5QFNTRmJqMqdGY-jGmjmg-lfwYbjfW_aH_aX0DVOVtpA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zhang, Tong</creator><creator>Li, Zhongrui</creator><creator>Qiu, Juan</creator><creator>Bai, Jing</creator><creator>Cao, Baowei</creator><creator>Xu, Shihang</creator><creator>Wang, Hanying</creator><creator>Xu, Yunhua</creator><creator>Guo, Lei</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst</title><author>Zhang, Tong ; Li, Zhongrui ; Qiu, Juan ; Bai, Jing ; Cao, Baowei ; Xu, Shihang ; Wang, Hanying ; Xu, Yunhua ; Guo, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-e87fe7039f76c2b6971e4db967098727dc5464c2fcba932edca0cdd5ca853e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Hydrocarbons</topic><topic>Hydrogenation</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Liquid fuels</topic><topic>Molecular chains</topic><topic>Organometallic Chemistry</topic><topic>Physical Chemistry</topic><topic>Synergistic effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Li, Zhongrui</creatorcontrib><creatorcontrib>Qiu, Juan</creatorcontrib><creatorcontrib>Bai, Jing</creatorcontrib><creatorcontrib>Cao, Baowei</creatorcontrib><creatorcontrib>Xu, Shihang</creatorcontrib><creatorcontrib>Wang, Hanying</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Guo, Lei</creatorcontrib><collection>CrossRef</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tong</au><au>Li, Zhongrui</au><au>Qiu, Juan</au><au>Bai, Jing</au><au>Cao, Baowei</au><au>Xu, Shihang</au><au>Wang, Hanying</au><au>Xu, Yunhua</au><au>Guo, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2025</date><risdate>2025</risdate><volume>155</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>Direct synthesis of liquid fuel (C 5+ hydrocarbons) through CO 2 hydrogenation has attracted considerable interest. However, it is plagued by high selectivity of C 1 by-products (CO and CH 4 ) and low reaction activity. Herein, we report that Na-FeZn catalysts promoted by a combination of metal additives and investigate their synergistic effect in the catalytic CO 2 hydrogenation reaction. The CO 2 conversion is high to 40.6% with the 68.3% C 5+ selectivity. The characteristic results reveal the specific surface area has a great influence on the catalytic performance. Furthermore, the synergistic effect of Mn in the catalyst enhances CO 2 adsorption while weakening H 2 adsorption, thus remarkably promoting the carbon chain growth and limiting the production of C 1 products. This study offers a promising approach to modulating the metal electronic environment and improving carbon efficiency for CO 2 hydrogenation reactions. Graphical Abstract We present a simple NaFeZnMn-S nanocatalyst that can effectively catalyze CO 2 hydrogenation to C 5+ hydrocarbons. The selectivity towards C 5+ hydrocarbons is as high as 68.3% at 40.6% CO 2 conversion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-024-04869-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2025, Vol.155 (1), p.2, Article 2
issn 1011-372X
1572-879X
language eng
recordid cdi_proquest_journals_3126228470
source Springer Nature
subjects Adsorption
Carbon dioxide
Catalysis
Catalysts
Catalytic converters
Chemical reactions
Chemical synthesis
Chemistry
Chemistry and Materials Science
Hydrocarbons
Hydrogenation
Industrial Chemistry/Chemical Engineering
Liquid fuels
Molecular chains
Organometallic Chemistry
Physical Chemistry
Synergistic effect
title High Selectivity CO2 Hydrogenation to Liquid Fuel Over NaFeZnMn Catalyst
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Selectivity%20CO2%20Hydrogenation%20to%20Liquid%20Fuel%20Over%20NaFeZnMn%20Catalyst&rft.jtitle=Catalysis%20letters&rft.au=Zhang,%20Tong&rft.date=2025&rft.volume=155&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-024-04869-7&rft_dat=%3Cproquest_cross%3E3126228470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-e87fe7039f76c2b6971e4db967098727dc5464c2fcba932edca0cdd5ca853e373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126228470&rft_id=info:pmid/&rfr_iscdi=true