Loading…

Feasibility Study of Multi-Layer CFRP Press Molding Method

This study examines the feasibility of utilizing the press forming method on multi-layer, multi-orientation continuous CFRP preform produced by the additive manufacturing (AM) technique. The 5-layer preforms with fiber orientations of 45° and -45° impregnated in Nylon-6 resin layers were made by a 3...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2024-11, Vol.994, p.3-18
Main Authors: Thangkasemvathana, Tanatat, Tanaka, Hidetake, Yilmaz, Emir, Nishimura, Yuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examines the feasibility of utilizing the press forming method on multi-layer, multi-orientation continuous CFRP preform produced by the additive manufacturing (AM) technique. The 5-layer preforms with fiber orientations of 45° and -45° impregnated in Nylon-6 resin layers were made by a 3D printer, and press-formed in varying temperatures and pressures. Optimal forming outcomes were determined by qualitative evaluations of the surface finish, fiber impregnation, resin flow, and quantitative observations on shape variations by comparison with the mold dimensions. Experimental results showed that the molding temperature of 220°C and pressure between 0.5MPa - 1MPa could produce preforms with optimal surface conditions. There was almost no void of bubble defects, no excess resin flow, and a smooth transition was established between the carbon fiber and the matrix resin layers while allowing the full mechanical strength properties to be realized. The formed preform evaluations confirmed that the press molding method is feasible on multi-layer, multi-orientation continuous CFRP with optimal surface conditions.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/p-MHs2K6