Loading…

Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers

The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbance...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2024-11, Vol.999, Article A14
Main Authors: Hu, Kai-Xin, Du, Kang, Chen, Qi-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 999
creator Hu, Kai-Xin
Du, Kang
Chen, Qi-Sheng
description The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.
doi_str_mv 10.1017/jfm.2024.895
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126590742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_895</cupid><sourcerecordid>3126590742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmkv08SvELioIoeAvZzaxNySZtslXqr3dLC148Dcw87zvwEHIJLAUG5c2y61POeJZWdX5EJpAVdVIWWX5MJoxxngBwdkrOYlwyBoLV5YR8PHtnjUMV6Lf6wkiNo4rGxbhATa1Zb4ymnbE99bvDwgfz492gLF1Z5ZCqgcZeWUtfceu81ZG6Td9giOfkpFM24sVhTsn7_d3b7DGZvzw8zW7nSct5OSQldlUNiG2DuiuRc8CMYyOqAkEUlQDd5hUvcgQtmjoDpVSLOXLRVazRdSWm5Grfuwp-vcE4yKXfBDe-lALGYM3KjI_U9Z5qg48xYCdXwfQqbCUwuXMnR3dy506O7kY8PeCqb4LRn_jX-m_gF3nbcc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126590742</pqid></control><display><type>article</type><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><source>Cambridge University Press</source><creator>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</creator><creatorcontrib>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</creatorcontrib><description>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.895</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Cooling ; Disturbances ; Finite difference method ; Fluid flow ; Gas flow ; Gravitational effects ; Gravity ; Gravity effects ; Interface stability ; Investigations ; JFM Papers ; Mathematical analysis ; Nonlinear waves ; Oscillations ; Parameter sensitivity ; Quasi-Periodic Oscillations ; Reynolds number ; Shear stress ; Solitary waves ; Surface tension ; Thin films ; Traveling waves</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.999, Article A14</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</cites><orcidid>0000-0001-7877-3386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024008954/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Du, Kang</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</description><subject>Approximation</subject><subject>Cooling</subject><subject>Disturbances</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Gravitational effects</subject><subject>Gravity</subject><subject>Gravity effects</subject><subject>Interface stability</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Mathematical analysis</subject><subject>Nonlinear waves</subject><subject>Oscillations</subject><subject>Parameter sensitivity</subject><subject>Quasi-Periodic Oscillations</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Solitary waves</subject><subject>Surface tension</subject><subject>Thin films</subject><subject>Traveling waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmkv08SvELioIoeAvZzaxNySZtslXqr3dLC148Dcw87zvwEHIJLAUG5c2y61POeJZWdX5EJpAVdVIWWX5MJoxxngBwdkrOYlwyBoLV5YR8PHtnjUMV6Lf6wkiNo4rGxbhATa1Zb4ymnbE99bvDwgfz492gLF1Z5ZCqgcZeWUtfceu81ZG6Td9giOfkpFM24sVhTsn7_d3b7DGZvzw8zW7nSct5OSQldlUNiG2DuiuRc8CMYyOqAkEUlQDd5hUvcgQtmjoDpVSLOXLRVazRdSWm5Grfuwp-vcE4yKXfBDe-lALGYM3KjI_U9Z5qg48xYCdXwfQqbCUwuXMnR3dy506O7kY8PeCqb4LRn_jX-m_gF3nbcc8</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Hu, Kai-Xin</creator><creator>Du, Kang</creator><creator>Chen, Qi-Sheng</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid></search><sort><creationdate>20241111</creationdate><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><author>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Cooling</topic><topic>Disturbances</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Gravitational effects</topic><topic>Gravity</topic><topic>Gravity effects</topic><topic>Interface stability</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Mathematical analysis</topic><topic>Nonlinear waves</topic><topic>Oscillations</topic><topic>Parameter sensitivity</topic><topic>Quasi-Periodic Oscillations</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Solitary waves</topic><topic>Surface tension</topic><topic>Thin films</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Du, Kang</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kai-Xin</au><au>Du, Kang</au><au>Chen, Qi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>999</volume><artnum>A14</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.895</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-11, Vol.999, Article A14
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3126590742
source Cambridge University Press
subjects Approximation
Cooling
Disturbances
Finite difference method
Fluid flow
Gas flow
Gravitational effects
Gravity
Gravity effects
Interface stability
Investigations
JFM Papers
Mathematical analysis
Nonlinear waves
Oscillations
Parameter sensitivity
Quasi-Periodic Oscillations
Reynolds number
Shear stress
Solitary waves
Surface tension
Thin films
Traveling waves
title Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20waves%20in%20a%20sheared%20liquid%20film%20on%20a%20horizontal%20plane%20at%20small%20Reynolds%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hu,%20Kai-Xin&rft.date=2024-11-11&rft.volume=999&rft.artnum=A14&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.895&rft_dat=%3Cproquest_cross%3E3126590742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126590742&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_895&rfr_iscdi=true