Loading…
Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers
The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbance...
Saved in:
Published in: | Journal of fluid mechanics 2024-11, Vol.999, Article A14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 999 |
creator | Hu, Kai-Xin Du, Kang Chen, Qi-Sheng |
description | The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour. |
doi_str_mv | 10.1017/jfm.2024.895 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126590742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_895</cupid><sourcerecordid>3126590742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmkv08SvELioIoeAvZzaxNySZtslXqr3dLC148Dcw87zvwEHIJLAUG5c2y61POeJZWdX5EJpAVdVIWWX5MJoxxngBwdkrOYlwyBoLV5YR8PHtnjUMV6Lf6wkiNo4rGxbhATa1Zb4ymnbE99bvDwgfz492gLF1Z5ZCqgcZeWUtfceu81ZG6Td9giOfkpFM24sVhTsn7_d3b7DGZvzw8zW7nSct5OSQldlUNiG2DuiuRc8CMYyOqAkEUlQDd5hUvcgQtmjoDpVSLOXLRVazRdSWm5Grfuwp-vcE4yKXfBDe-lALGYM3KjI_U9Z5qg48xYCdXwfQqbCUwuXMnR3dy506O7kY8PeCqb4LRn_jX-m_gF3nbcc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126590742</pqid></control><display><type>article</type><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><source>Cambridge University Press</source><creator>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</creator><creatorcontrib>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</creatorcontrib><description>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.895</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Cooling ; Disturbances ; Finite difference method ; Fluid flow ; Gas flow ; Gravitational effects ; Gravity ; Gravity effects ; Interface stability ; Investigations ; JFM Papers ; Mathematical analysis ; Nonlinear waves ; Oscillations ; Parameter sensitivity ; Quasi-Periodic Oscillations ; Reynolds number ; Shear stress ; Solitary waves ; Surface tension ; Thin films ; Traveling waves</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.999, Article A14</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</cites><orcidid>0000-0001-7877-3386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024008954/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72832</link.rule.ids></links><search><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Du, Kang</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</description><subject>Approximation</subject><subject>Cooling</subject><subject>Disturbances</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Gravitational effects</subject><subject>Gravity</subject><subject>Gravity effects</subject><subject>Interface stability</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Mathematical analysis</subject><subject>Nonlinear waves</subject><subject>Oscillations</subject><subject>Parameter sensitivity</subject><subject>Quasi-Periodic Oscillations</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Solitary waves</subject><subject>Surface tension</subject><subject>Thin films</subject><subject>Traveling waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs3f0DAq7tmkv08SvELioIoeAvZzaxNySZtslXqr3dLC148Dcw87zvwEHIJLAUG5c2y61POeJZWdX5EJpAVdVIWWX5MJoxxngBwdkrOYlwyBoLV5YR8PHtnjUMV6Lf6wkiNo4rGxbhATa1Zb4ymnbE99bvDwgfz492gLF1Z5ZCqgcZeWUtfceu81ZG6Td9giOfkpFM24sVhTsn7_d3b7DGZvzw8zW7nSct5OSQldlUNiG2DuiuRc8CMYyOqAkEUlQDd5hUvcgQtmjoDpVSLOXLRVazRdSWm5Grfuwp-vcE4yKXfBDe-lALGYM3KjI_U9Z5qg48xYCdXwfQqbCUwuXMnR3dy506O7kY8PeCqb4LRn_jX-m_gF3nbcc8</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Hu, Kai-Xin</creator><creator>Du, Kang</creator><creator>Chen, Qi-Sheng</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid></search><sort><creationdate>20241111</creationdate><title>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</title><author>Hu, Kai-Xin ; Du, Kang ; Chen, Qi-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Cooling</topic><topic>Disturbances</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Gravitational effects</topic><topic>Gravity</topic><topic>Gravity effects</topic><topic>Interface stability</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Mathematical analysis</topic><topic>Nonlinear waves</topic><topic>Oscillations</topic><topic>Parameter sensitivity</topic><topic>Quasi-Periodic Oscillations</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Solitary waves</topic><topic>Surface tension</topic><topic>Thin films</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Kai-Xin</creatorcontrib><creatorcontrib>Du, Kang</creatorcontrib><creatorcontrib>Chen, Qi-Sheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Kai-Xin</au><au>Du, Kang</au><au>Chen, Qi-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-11</date><risdate>2024</risdate><volume>999</volume><artnum>A14</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The nonlinear waves in a sheared liquid film on a horizontal plate at small Reynolds numbers are examined by theoretical and numerical approaches. The analysis employs the long-wave approximation along with finite difference schemes. The results show that the surface tension can suppress disturbances and prevent the occurrence of singularities. While the film flow is driven by the shear stress on the interface, its instability highly depends on the magnitude and direction of gravity. Specifically, when the direction of gravity is opposite to the wall-normal direction, perturbations are stabilized by gravity. In contrast, when these two directions are the same, the gravitational force is destabilizing, and stationary travelling waves can exist if a balance is reached between the effects of gravity and surface tension. For the steady solitary waves, there are quasi-periodic oscillations occurring between two stationary points, indicating the presence of heteroclinic trajectories. For periodic waves, the evolutions are sensitive to several parameters and initial disturbances, while one steady-state wave exhibits a sine function-like behaviour.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.895</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-7877-3386</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2024-11, Vol.999, Article A14 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_3126590742 |
source | Cambridge University Press |
subjects | Approximation Cooling Disturbances Finite difference method Fluid flow Gas flow Gravitational effects Gravity Gravity effects Interface stability Investigations JFM Papers Mathematical analysis Nonlinear waves Oscillations Parameter sensitivity Quasi-Periodic Oscillations Reynolds number Shear stress Solitary waves Surface tension Thin films Traveling waves |
title | Nonlinear waves in a sheared liquid film on a horizontal plane at small Reynolds numbers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20waves%20in%20a%20sheared%20liquid%20film%20on%20a%20horizontal%20plane%20at%20small%20Reynolds%20numbers&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Hu,%20Kai-Xin&rft.date=2024-11-11&rft.volume=999&rft.artnum=A14&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.895&rft_dat=%3Cproquest_cross%3E3126590742%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c227t-7ef891eecbedf7e221e42eb386e136831dc58265e1d3b941aaace5e23f80bd983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126590742&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_895&rfr_iscdi=true |