Loading…
Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species
Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derive...
Saved in:
Published in: | CrystEngComm 2024-11, Vol.26 (44), p.6288-6295 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6295 |
container_issue | 44 |
container_start_page | 6288 |
container_title | CrystEngComm |
container_volume | 26 |
creator | Liu, Tie Zhang, Guangwei |
description | Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries. |
doi_str_mv | 10.1039/d4ce00756e |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126678249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126678249</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0kJEph4QksMZv6L47DhqpCkSq6wFw57jW4hDjNdUBsDLwBb8iTEATfcpZP5xByJviF4KqabbUHzsvCwAGZCG0Ms1ypI3KMuONcaCH4hHwuQog-QpspNOBzn7zLrnnHjDSkntYxvThEuh8cRoapiVuG2WWgq_j98bWWtHY5Qx8BL2mX-jQgbV07Wh4B6VvMT7SN_hma8exT7ZrM7mZz6nyOr0Cxg7GNJ-QwuAbh9J9T8nC9uJ8v2Wp9czu_WrFOCJVZVRuQxnqwxkpd2ULxQvNQlErJykAIFlxVGqm458YbLkHrytXjhHRbYdWUnP95uz7tB8C82aWhb8fkRglpTPmrVT8jomNu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126678249</pqid></control><display><type>article</type><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><source>Royal Society of Chemistry</source><creator>Liu, Tie ; Zhang, Guangwei</creator><creatorcontrib>Liu, Tie ; Zhang, Guangwei</creatorcontrib><description>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d4ce00756e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accessibility ; Bimetals ; Biomass ; Carbon ; Cobalt ; Diffusion rate ; Discharge ; Electrocatalysts ; Electron conductivity ; Ion diffusion ; Nickel ; Porous materials ; Pyrolysis ; Solid state</subject><ispartof>CrystEngComm, 2024-11, Vol.26 (44), p.6288-6295</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Guangwei</creatorcontrib><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><title>CrystEngComm</title><description>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</description><subject>Accessibility</subject><subject>Bimetals</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Cobalt</subject><subject>Diffusion rate</subject><subject>Discharge</subject><subject>Electrocatalysts</subject><subject>Electron conductivity</subject><subject>Ion diffusion</subject><subject>Nickel</subject><subject>Porous materials</subject><subject>Pyrolysis</subject><subject>Solid state</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjb1OwzAURi0kJEph4QksMZv6L47DhqpCkSq6wFw57jW4hDjNdUBsDLwBb8iTEATfcpZP5xByJviF4KqabbUHzsvCwAGZCG0Ms1ypI3KMuONcaCH4hHwuQog-QpspNOBzn7zLrnnHjDSkntYxvThEuh8cRoapiVuG2WWgq_j98bWWtHY5Qx8BL2mX-jQgbV07Wh4B6VvMT7SN_hma8exT7ZrM7mZz6nyOr0Cxg7GNJ-QwuAbh9J9T8nC9uJ8v2Wp9czu_WrFOCJVZVRuQxnqwxkpd2ULxQvNQlErJykAIFlxVGqm458YbLkHrytXjhHRbYdWUnP95uz7tB8C82aWhb8fkRglpTPmrVT8jomNu</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Liu, Tie</creator><creator>Zhang, Guangwei</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20241111</creationdate><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><author>Liu, Tie ; Zhang, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Bimetals</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Cobalt</topic><topic>Diffusion rate</topic><topic>Discharge</topic><topic>Electrocatalysts</topic><topic>Electron conductivity</topic><topic>Ion diffusion</topic><topic>Nickel</topic><topic>Porous materials</topic><topic>Pyrolysis</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Guangwei</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tie</au><au>Zhang, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</atitle><jtitle>CrystEngComm</jtitle><date>2024-11-11</date><risdate>2024</risdate><volume>26</volume><issue>44</issue><spage>6288</spage><epage>6295</epage><pages>6288-6295</pages><eissn>1466-8033</eissn><abstract>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ce00756e</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2024-11, Vol.26 (44), p.6288-6295 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_3126678249 |
source | Royal Society of Chemistry |
subjects | Accessibility Bimetals Biomass Carbon Cobalt Diffusion rate Discharge Electrocatalysts Electron conductivity Ion diffusion Nickel Porous materials Pyrolysis Solid state |
title | Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20electrocatalysts%20for%20biomass%20quasi-solid-state%20Li%E2%80%93O2%20batteries:%20porous%20nanocages%20with%20nickel%E2%80%93cobalt-N/C%20active%20species&rft.jtitle=CrystEngComm&rft.au=Liu,%20Tie&rft.date=2024-11-11&rft.volume=26&rft.issue=44&rft.spage=6288&rft.epage=6295&rft.pages=6288-6295&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d4ce00756e&rft_dat=%3Cproquest%3E3126678249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126678249&rft_id=info:pmid/&rfr_iscdi=true |