Loading…

Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species

Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derive...

Full description

Saved in:
Bibliographic Details
Published in:CrystEngComm 2024-11, Vol.26 (44), p.6288-6295
Main Authors: Liu, Tie, Zhang, Guangwei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6295
container_issue 44
container_start_page 6288
container_title CrystEngComm
container_volume 26
creator Liu, Tie
Zhang, Guangwei
description Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.
doi_str_mv 10.1039/d4ce00756e
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126678249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126678249</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183</originalsourceid><addsrcrecordid>eNotjb1OwzAURi0kJEph4QksMZv6L47DhqpCkSq6wFw57jW4hDjNdUBsDLwBb8iTEATfcpZP5xByJviF4KqabbUHzsvCwAGZCG0Ms1ypI3KMuONcaCH4hHwuQog-QpspNOBzn7zLrnnHjDSkntYxvThEuh8cRoapiVuG2WWgq_j98bWWtHY5Qx8BL2mX-jQgbV07Wh4B6VvMT7SN_hma8exT7ZrM7mZz6nyOr0Cxg7GNJ-QwuAbh9J9T8nC9uJ8v2Wp9czu_WrFOCJVZVRuQxnqwxkpd2ULxQvNQlErJykAIFlxVGqm458YbLkHrytXjhHRbYdWUnP95uz7tB8C82aWhb8fkRglpTPmrVT8jomNu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126678249</pqid></control><display><type>article</type><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><source>Royal Society of Chemistry</source><creator>Liu, Tie ; Zhang, Guangwei</creator><creatorcontrib>Liu, Tie ; Zhang, Guangwei</creatorcontrib><description>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d4ce00756e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accessibility ; Bimetals ; Biomass ; Carbon ; Cobalt ; Diffusion rate ; Discharge ; Electrocatalysts ; Electron conductivity ; Ion diffusion ; Nickel ; Porous materials ; Pyrolysis ; Solid state</subject><ispartof>CrystEngComm, 2024-11, Vol.26 (44), p.6288-6295</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Guangwei</creatorcontrib><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><title>CrystEngComm</title><description>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</description><subject>Accessibility</subject><subject>Bimetals</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Cobalt</subject><subject>Diffusion rate</subject><subject>Discharge</subject><subject>Electrocatalysts</subject><subject>Electron conductivity</subject><subject>Ion diffusion</subject><subject>Nickel</subject><subject>Porous materials</subject><subject>Pyrolysis</subject><subject>Solid state</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjb1OwzAURi0kJEph4QksMZv6L47DhqpCkSq6wFw57jW4hDjNdUBsDLwBb8iTEATfcpZP5xByJviF4KqabbUHzsvCwAGZCG0Ms1ypI3KMuONcaCH4hHwuQog-QpspNOBzn7zLrnnHjDSkntYxvThEuh8cRoapiVuG2WWgq_j98bWWtHY5Qx8BL2mX-jQgbV07Wh4B6VvMT7SN_hma8exT7ZrM7mZz6nyOr0Cxg7GNJ-QwuAbh9J9T8nC9uJ8v2Wp9czu_WrFOCJVZVRuQxnqwxkpd2ULxQvNQlErJykAIFlxVGqm458YbLkHrytXjhHRbYdWUnP95uz7tB8C82aWhb8fkRglpTPmrVT8jomNu</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Liu, Tie</creator><creator>Zhang, Guangwei</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20241111</creationdate><title>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</title><author>Liu, Tie ; Zhang, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Bimetals</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Cobalt</topic><topic>Diffusion rate</topic><topic>Discharge</topic><topic>Electrocatalysts</topic><topic>Electron conductivity</topic><topic>Ion diffusion</topic><topic>Nickel</topic><topic>Porous materials</topic><topic>Pyrolysis</topic><topic>Solid state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tie</creatorcontrib><creatorcontrib>Zhang, Guangwei</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tie</au><au>Zhang, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species</atitle><jtitle>CrystEngComm</jtitle><date>2024-11-11</date><risdate>2024</risdate><volume>26</volume><issue>44</issue><spage>6288</spage><epage>6295</epage><pages>6288-6295</pages><eissn>1466-8033</eissn><abstract>Ordered porous materials can offer more accessible catalytic sites and large buffer space for discharge products, thus improving cell performance. In this paper, a simple down-top solution-precipitation method followed by pyrolysis was proposed to disperse active nickel–cobalt-NC sites in ZIF-derived porous carbon nanocages. It was found that these metal nanoparticles were confined in the N-enriched carbon nanocage with a total metal loading of about 8.74 at%. As expected, this porous structure not only enhances electron conductivity, but also provides a sufficient surface area to facilitate the triphasic cell reaction and create more space for the storage of discharge products. Experimental findings confirm that this interesting nanostructure manifests an increase in capacity (6682.6 mA h g−1), coulombic efficiency (∼100%) and cycling performance (∼80 cycles) over the control group for quasi-solid-state cells. Benefitting from the addition of Ni to modify the porous structure, the O2/ion diffusion pathway and accessible active sites are enriched, yielding faster redox kinetics and lower overpotential (high reversibility). Thus, our work demonstrates that this type of porous bimetallic nanocage is promising for fabricating efficient biomass quasi-solid-state Li–O2 batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ce00756e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1466-8033
ispartof CrystEngComm, 2024-11, Vol.26 (44), p.6288-6295
issn 1466-8033
language eng
recordid cdi_proquest_journals_3126678249
source Royal Society of Chemistry
subjects Accessibility
Bimetals
Biomass
Carbon
Cobalt
Diffusion rate
Discharge
Electrocatalysts
Electron conductivity
Ion diffusion
Nickel
Porous materials
Pyrolysis
Solid state
title Efficient electrocatalysts for biomass quasi-solid-state Li–O2 batteries: porous nanocages with nickel–cobalt-N/C active species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20electrocatalysts%20for%20biomass%20quasi-solid-state%20Li%E2%80%93O2%20batteries:%20porous%20nanocages%20with%20nickel%E2%80%93cobalt-N/C%20active%20species&rft.jtitle=CrystEngComm&rft.au=Liu,%20Tie&rft.date=2024-11-11&rft.volume=26&rft.issue=44&rft.spage=6288&rft.epage=6295&rft.pages=6288-6295&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d4ce00756e&rft_dat=%3Cproquest%3E3126678249%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p113t-9b6e268ce8682498530540f5733296eff8ea976230c06c602e449abbbb12ad183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126678249&rft_id=info:pmid/&rfr_iscdi=true