Loading…

3D Printed Sodiophilic Nb2CTx/Reduced Graphene Oxide Monoliths Enable Long Cycle Stability of Sodium Metal Anodes

As a promising anode material for Na‐metal batteries, the practical application of Na metal is severely hindered due to the formation of the notorious dendrite and unstable solid‐electrolyte interface (SEI). To address these issues, a direct‐ink writing (DIW) 3D printing technology is proposed to co...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2024-11, Vol.34 (46), p.n/a
Main Authors: Liu, Yueyue, Wang, Hui, Pan, Denghui, Hou, Jingrui, Yao, Jingjing, Kong, Dezhi, Xu, Tingting, Shi, Yumeng, Li, Xinjian, Yang, Hui Ying, Wang, Ye, Wu, Zhong‐Shuai
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As a promising anode material for Na‐metal batteries, the practical application of Na metal is severely hindered due to the formation of the notorious dendrite and unstable solid‐electrolyte interface (SEI). To address these issues, a direct‐ink writing (DIW) 3D printing technology is proposed to construct an artificial 3D hierarchical porous sodiophilic Nb2CTx/reduced graphene‐oxide (Nb2CTx/rGO) aerogel monolith, which is employed as the matrix of Na metal anode. Benefiting from the homogeneous ion flux and exceptional sodiophilic features, the Nb2CTx nanoflakes embedded within the 3D scaffold regulate the uniform deposition of metallic Na with a stable SEI layer, achieving an ultralong cycle lifespan of 3000 h at 1 mA cm−2 with 1 mAh cm−2 and an impressive Coulombic efficiency of 99.68% over extended lifespan of 7064 h. Further, the in‐depth characterization analysis proves that the formed stable SEI layer consists of an inorganic NaF accumulated in the inner layer and loosely‐bound organic species in the outer layer. Remarkably, when integrated into a Na metal full cell, the reversible capacity reaches 90.22 mAh g−1 after 200 cycles at 100 mA g−1. The work provides a promising strategy to utilize Na metal anodes with long cycle lifespan for next‐generation sodium metal batteries. A 3D printed sodiophilic Nb2CTx/reduced graphene oxide monolith with the homogeneous ion flux and exceptional sodiophilic features is demonstrated as the stable host of Na metal anode, in which the Nb2CTx nanoflakes regulate the uniform deposition of metallic Na with a stable and robust SEI layer, achieving an ultralong cycle lifespan.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202405460