Loading…
Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant
In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous...
Saved in:
Published in: | International journal of automotive and mechanical engineering 2023-10, Vol.20 (3), p.10671-10683 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10683 |
container_issue | 3 |
container_start_page | 10671 |
container_title | International journal of automotive and mechanical engineering |
container_volume | 20 |
creator | Bensouici, Moumtez Azizi, Mohamed Walid Bensouici, Fatima Zohra |
description | In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models. |
doi_str_mv | 10.15282/ijame.20.3.2023.10.0824 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126705332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126705332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3</originalsourceid><addsrcrecordid>eNotkN9LwzAQx4MoOOb-h4DPrcmlbdLHMXQKk4058DEk3XVkrO1MWmX-9Wab93A_vxx3H0IoZynPQcGT25sGU2CpiA5EGgdMQXZDRsAVS3jBituYA5SJKrLynkxC2LNoirFCwYh8rtDXnW9MWyGdtuZwCi5Q027p8ti7xv2a3nUt7Wq6xh226GP9jXRuAt0M3roW6ar7QU9XB9P2dAiu3dH1x_sDuavNIeDkP47J5uV5M3tNFsv522y6SCopIVFSIjIrbbzQciHz2JWmLJCDUExujbU2y0ydbQsJwgoFqGqWWyhzCTmvxJg8Xtceffc1YOj1vht8fCNowaGQLBcCokpdVZXvQvBY66N3jfEnzZm-gNQXkBqYFvoM8jw4gxR_2D1m_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126705332</pqid></control><display><type>article</type><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</title><source>Publicly Available Content Database</source><creator>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</creator><creatorcontrib>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</creatorcontrib><description>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</description><identifier>ISSN: 2229-8649</identifier><identifier>EISSN: 2180-1606</identifier><identifier>DOI: 10.15282/ijame.20.3.2023.10.0824</identifier><language>eng</language><publisher>Kuantan: Universiti Malaysia Pahang</publisher><subject>Compression ratio ; Design optimization ; Design parameters ; Energy consumption ; Gas turbines ; Gas-fired power plants ; Inlet temperature ; Multiple objective analysis ; Optimization ; Parameter identification ; Power plants ; Process parameters ; Regenerators ; Regression models ; Response surface methodology ; Statistical analysis ; Statistical models ; Thermodynamic efficiency ; Thermodynamics ; Variance analysis</subject><ispartof>International journal of automotive and mechanical engineering, 2023-10, Vol.20 (3), p.10671-10683</ispartof><rights>Per publisher notification this content is offered under CC BY © 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3666-1391 ; 0000-0002-5855-1775 ; 0000-0003-1066-740X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126705332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126705332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Bensouici, Moumtez</creatorcontrib><creatorcontrib>Azizi, Mohamed Walid</creatorcontrib><creatorcontrib>Bensouici, Fatima Zohra</creatorcontrib><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</title><title>International journal of automotive and mechanical engineering</title><description>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</description><subject>Compression ratio</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Energy consumption</subject><subject>Gas turbines</subject><subject>Gas-fired power plants</subject><subject>Inlet temperature</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Power plants</subject><subject>Process parameters</subject><subject>Regenerators</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamics</subject><subject>Variance analysis</subject><issn>2229-8649</issn><issn>2180-1606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkN9LwzAQx4MoOOb-h4DPrcmlbdLHMXQKk4058DEk3XVkrO1MWmX-9Wab93A_vxx3H0IoZynPQcGT25sGU2CpiA5EGgdMQXZDRsAVS3jBituYA5SJKrLynkxC2LNoirFCwYh8rtDXnW9MWyGdtuZwCi5Q027p8ti7xv2a3nUt7Wq6xh226GP9jXRuAt0M3roW6ar7QU9XB9P2dAiu3dH1x_sDuavNIeDkP47J5uV5M3tNFsv522y6SCopIVFSIjIrbbzQciHz2JWmLJCDUExujbU2y0ydbQsJwgoFqGqWWyhzCTmvxJg8Xtceffc1YOj1vht8fCNowaGQLBcCokpdVZXvQvBY66N3jfEnzZm-gNQXkBqYFvoM8jw4gxR_2D1m_w</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Bensouici, Moumtez</creator><creator>Azizi, Mohamed Walid</creator><creator>Bensouici, Fatima Zohra</creator><general>Universiti Malaysia Pahang</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3666-1391</orcidid><orcidid>https://orcid.org/0000-0002-5855-1775</orcidid><orcidid>https://orcid.org/0000-0003-1066-740X</orcidid></search><sort><creationdate>20231009</creationdate><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM</title><author>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compression ratio</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Energy consumption</topic><topic>Gas turbines</topic><topic>Gas-fired power plants</topic><topic>Inlet temperature</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Power plants</topic><topic>Process parameters</topic><topic>Regenerators</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamics</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensouici, Moumtez</creatorcontrib><creatorcontrib>Azizi, Mohamed Walid</creatorcontrib><creatorcontrib>Bensouici, Fatima Zohra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of automotive and mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensouici, Moumtez</au><au>Azizi, Mohamed Walid</au><au>Bensouici, Fatima Zohra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</atitle><jtitle>International journal of automotive and mechanical engineering</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>10671</spage><epage>10683</epage><pages>10671-10683</pages><issn>2229-8649</issn><eissn>2180-1606</eissn><abstract>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</abstract><cop>Kuantan</cop><pub>Universiti Malaysia Pahang</pub><doi>10.15282/ijame.20.3.2023.10.0824</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3666-1391</orcidid><orcidid>https://orcid.org/0000-0002-5855-1775</orcidid><orcidid>https://orcid.org/0000-0003-1066-740X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2229-8649 |
ispartof | International journal of automotive and mechanical engineering, 2023-10, Vol.20 (3), p.10671-10683 |
issn | 2229-8649 2180-1606 |
language | eng |
recordid | cdi_proquest_journals_3126705332 |
source | Publicly Available Content Database |
subjects | Compression ratio Design optimization Design parameters Energy consumption Gas turbines Gas-fired power plants Inlet temperature Multiple objective analysis Optimization Parameter identification Power plants Process parameters Regenerators Regression models Response surface methodology Statistical analysis Statistical models Thermodynamic efficiency Thermodynamics Variance analysis |
title | Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Optimization%20of%20Regenerative%20Gas%20Turbine%20Power%20Plant%20using%20RSM:%20Optimization%20of%20regenerative%20gas%20turbine%20power%20plant&rft.jtitle=International%20journal%20of%20automotive%20and%20mechanical%20engineering&rft.au=Bensouici,%20Moumtez&rft.date=2023-10-09&rft.volume=20&rft.issue=3&rft.spage=10671&rft.epage=10683&rft.pages=10671-10683&rft.issn=2229-8649&rft.eissn=2180-1606&rft_id=info:doi/10.15282/ijame.20.3.2023.10.0824&rft_dat=%3Cproquest_cross%3E3126705332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126705332&rft_id=info:pmid/&rfr_iscdi=true |