Loading…

Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant

In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous...

Full description

Saved in:
Bibliographic Details
Published in:International journal of automotive and mechanical engineering 2023-10, Vol.20 (3), p.10671-10683
Main Authors: Bensouici, Moumtez, Azizi, Mohamed Walid, Bensouici, Fatima Zohra
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10683
container_issue 3
container_start_page 10671
container_title International journal of automotive and mechanical engineering
container_volume 20
creator Bensouici, Moumtez
Azizi, Mohamed Walid
Bensouici, Fatima Zohra
description In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.
doi_str_mv 10.15282/ijame.20.3.2023.10.0824
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126705332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126705332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3</originalsourceid><addsrcrecordid>eNotkN9LwzAQx4MoOOb-h4DPrcmlbdLHMXQKk4058DEk3XVkrO1MWmX-9Wab93A_vxx3H0IoZynPQcGT25sGU2CpiA5EGgdMQXZDRsAVS3jBituYA5SJKrLynkxC2LNoirFCwYh8rtDXnW9MWyGdtuZwCi5Q027p8ti7xv2a3nUt7Wq6xh226GP9jXRuAt0M3roW6ar7QU9XB9P2dAiu3dH1x_sDuavNIeDkP47J5uV5M3tNFsv522y6SCopIVFSIjIrbbzQciHz2JWmLJCDUExujbU2y0ydbQsJwgoFqGqWWyhzCTmvxJg8Xtceffc1YOj1vht8fCNowaGQLBcCokpdVZXvQvBY66N3jfEnzZm-gNQXkBqYFvoM8jw4gxR_2D1m_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126705332</pqid></control><display><type>article</type><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</title><source>Publicly Available Content Database</source><creator>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</creator><creatorcontrib>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</creatorcontrib><description>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</description><identifier>ISSN: 2229-8649</identifier><identifier>EISSN: 2180-1606</identifier><identifier>DOI: 10.15282/ijame.20.3.2023.10.0824</identifier><language>eng</language><publisher>Kuantan: Universiti Malaysia Pahang</publisher><subject>Compression ratio ; Design optimization ; Design parameters ; Energy consumption ; Gas turbines ; Gas-fired power plants ; Inlet temperature ; Multiple objective analysis ; Optimization ; Parameter identification ; Power plants ; Process parameters ; Regenerators ; Regression models ; Response surface methodology ; Statistical analysis ; Statistical models ; Thermodynamic efficiency ; Thermodynamics ; Variance analysis</subject><ispartof>International journal of automotive and mechanical engineering, 2023-10, Vol.20 (3), p.10671-10683</ispartof><rights>Per publisher notification this content is offered under CC BY © 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3666-1391 ; 0000-0002-5855-1775 ; 0000-0003-1066-740X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3126705332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126705332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Bensouici, Moumtez</creatorcontrib><creatorcontrib>Azizi, Mohamed Walid</creatorcontrib><creatorcontrib>Bensouici, Fatima Zohra</creatorcontrib><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</title><title>International journal of automotive and mechanical engineering</title><description>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</description><subject>Compression ratio</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Energy consumption</subject><subject>Gas turbines</subject><subject>Gas-fired power plants</subject><subject>Inlet temperature</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Power plants</subject><subject>Process parameters</subject><subject>Regenerators</subject><subject>Regression models</subject><subject>Response surface methodology</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Thermodynamic efficiency</subject><subject>Thermodynamics</subject><subject>Variance analysis</subject><issn>2229-8649</issn><issn>2180-1606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkN9LwzAQx4MoOOb-h4DPrcmlbdLHMXQKk4058DEk3XVkrO1MWmX-9Wab93A_vxx3H0IoZynPQcGT25sGU2CpiA5EGgdMQXZDRsAVS3jBituYA5SJKrLynkxC2LNoirFCwYh8rtDXnW9MWyGdtuZwCi5Q027p8ti7xv2a3nUt7Wq6xh226GP9jXRuAt0M3roW6ar7QU9XB9P2dAiu3dH1x_sDuavNIeDkP47J5uV5M3tNFsv522y6SCopIVFSIjIrbbzQciHz2JWmLJCDUExujbU2y0ydbQsJwgoFqGqWWyhzCTmvxJg8Xtceffc1YOj1vht8fCNowaGQLBcCokpdVZXvQvBY66N3jfEnzZm-gNQXkBqYFvoM8jw4gxR_2D1m_w</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Bensouici, Moumtez</creator><creator>Azizi, Mohamed Walid</creator><creator>Bensouici, Fatima Zohra</creator><general>Universiti Malaysia Pahang</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3666-1391</orcidid><orcidid>https://orcid.org/0000-0002-5855-1775</orcidid><orcidid>https://orcid.org/0000-0003-1066-740X</orcidid></search><sort><creationdate>20231009</creationdate><title>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM</title><author>Bensouici, Moumtez ; Azizi, Mohamed Walid ; Bensouici, Fatima Zohra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compression ratio</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Energy consumption</topic><topic>Gas turbines</topic><topic>Gas-fired power plants</topic><topic>Inlet temperature</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Power plants</topic><topic>Process parameters</topic><topic>Regenerators</topic><topic>Regression models</topic><topic>Response surface methodology</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Thermodynamic efficiency</topic><topic>Thermodynamics</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensouici, Moumtez</creatorcontrib><creatorcontrib>Azizi, Mohamed Walid</creatorcontrib><creatorcontrib>Bensouici, Fatima Zohra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of automotive and mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensouici, Moumtez</au><au>Azizi, Mohamed Walid</au><au>Bensouici, Fatima Zohra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant</atitle><jtitle>International journal of automotive and mechanical engineering</jtitle><date>2023-10-09</date><risdate>2023</risdate><volume>20</volume><issue>3</issue><spage>10671</spage><epage>10683</epage><pages>10671-10683</pages><issn>2229-8649</issn><eissn>2180-1606</eissn><abstract>In the present study, a thermodynamic analysis of thermal performance is carried out in a regenerative GT power plant. The optimization procedure of design parameters is realized by the response surface methodology (RSM). The thermodynamic simulations were carried out using the EES code for numerous variables such as compression ratio (2≤rp≤12), inlet temperature (273≤T1≤313K), turbine inlet temperature (1200≤T3≤1600K), and regenerator effectiveness (45≤ε≤85%). Analysis of variance (ANOVA) was carried out to identify the process parameters that influence thermal efficiency (ηth) and specific fuel consumption (SFC). Then, a second-order regression model was developed to correlate the process parameters with ηth and SFC. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are ηth=50.61% and SFC=0.117 kg/kWh, corresponding to process parameters T1=273.26K, T3=1597.64K, rp=6.95 and ε=84.89%. Lastly, verification simulations were conducted to validate the importance of the generated statistical models.</abstract><cop>Kuantan</cop><pub>Universiti Malaysia Pahang</pub><doi>10.15282/ijame.20.3.2023.10.0824</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3666-1391</orcidid><orcidid>https://orcid.org/0000-0002-5855-1775</orcidid><orcidid>https://orcid.org/0000-0003-1066-740X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2229-8649
ispartof International journal of automotive and mechanical engineering, 2023-10, Vol.20 (3), p.10671-10683
issn 2229-8649
2180-1606
language eng
recordid cdi_proquest_journals_3126705332
source Publicly Available Content Database
subjects Compression ratio
Design optimization
Design parameters
Energy consumption
Gas turbines
Gas-fired power plants
Inlet temperature
Multiple objective analysis
Optimization
Parameter identification
Power plants
Process parameters
Regenerators
Regression models
Response surface methodology
Statistical analysis
Statistical models
Thermodynamic efficiency
Thermodynamics
Variance analysis
title Performance Analysis and Optimization of Regenerative Gas Turbine Power Plant using RSM: Optimization of regenerative gas turbine power plant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20and%20Optimization%20of%20Regenerative%20Gas%20Turbine%20Power%20Plant%20using%20RSM:%20Optimization%20of%20regenerative%20gas%20turbine%20power%20plant&rft.jtitle=International%20journal%20of%20automotive%20and%20mechanical%20engineering&rft.au=Bensouici,%20Moumtez&rft.date=2023-10-09&rft.volume=20&rft.issue=3&rft.spage=10671&rft.epage=10683&rft.pages=10671-10683&rft.issn=2229-8649&rft.eissn=2180-1606&rft_id=info:doi/10.15282/ijame.20.3.2023.10.0824&rft_dat=%3Cproquest_cross%3E3126705332%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c772-877ee0b7b222b1375c777a96e123807dabbb44af4d6723b382e8f05b2957251c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126705332&rft_id=info:pmid/&rfr_iscdi=true