Loading…

Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest

The goal of this proposed research is to find an alternative to the Random Forest method for text summarising that is both more accurate and more efficient in reducing lengthy texts to a manageable size. In order to summarise the text using a sample size of 63459 utilisingClincalc with a G power of...

Full description

Saved in:
Bibliographic Details
Main Authors: Rupesh, Kollaikal, Christy, S.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3193
creator Rupesh, Kollaikal
Christy, S.
description The goal of this proposed research is to find an alternative to the Random Forest method for text summarising that is both more accurate and more efficient in reducing lengthy texts to a manageable size. In order to summarise the text using a sample size of 63459 utilisingClincalc with a G power of 0.8, alpha of 0.05, and a 95% confidence level, we employed two algorithms: Novel Long Short Term Memory (N=10) and Random Forest (N=10). The level of correctness in the text summary is used to evaluate them. Results and Discussion: In the dataset, we find that Novel Long Short Term Memory achieves an accuracy of 94.45% and Random Forest achieves 73.57% when it comes to summarising the text. According to the Independent Sample T-Test (p
doi_str_mv 10.1063/5.0233047
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3126775126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126775126</sourcerecordid><originalsourceid>FETCH-LOGICAL-p637-eb0a0522b690818396dc5d6674a27fa2cc160deec00155cd7f9463fccfe779103</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMKBP7DEDSllbSd2c0RVeUiVuPTALXIdp3UVx8F2CuXMh-M-LvsYzexoFqF7AhMCnD0VE6CMQS4u0IgUBckEJ_wSjQDKPKM5-7xGNyFsAWgpxHSE_uY72Q4yahw3GkulBn9Yeq9ro6JxHXYNjvon4jBYK735lUd0CKZb487tdItbl8awcT4mprfYauv8Hst27byJG4tNh5WzfVKHJP1OGPayq53FjfM6xFt01cg26LtzH6Ply3w5e8sWH6_vs-dF1nMmMr0CCQWlK17ClExZyWtV1JyLXFLRSKoU4VBrrQBSclWLpsw5a5RqtBAlATZGD6ezvXdfQ_Kttm7wXXKsGKFciCLVxHo8sYIy8Ri26r1J0fcVgerw5Kqozk9m_4KycXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3126775126</pqid></control><display><type>conference_proceeding</type><title>Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Rupesh, Kollaikal ; Christy, S.</creator><contributor>Srinivasan, R ; Balasubramanian, PL ; Seenivasan, M ; Sharma, T. Rakesh ; Vijayan, V. ; Babu, A. B. Karthick Anand</contributor><creatorcontrib>Rupesh, Kollaikal ; Christy, S. ; Srinivasan, R ; Balasubramanian, PL ; Seenivasan, M ; Sharma, T. Rakesh ; Vijayan, V. ; Babu, A. B. Karthick Anand</creatorcontrib><description>The goal of this proposed research is to find an alternative to the Random Forest method for text summarising that is both more accurate and more efficient in reducing lengthy texts to a manageable size. In order to summarise the text using a sample size of 63459 utilisingClincalc with a G power of 0.8, alpha of 0.05, and a 95% confidence level, we employed two algorithms: Novel Long Short Term Memory (N=10) and Random Forest (N=10). The level of correctness in the text summary is used to evaluate them. Results and Discussion: In the dataset, we find that Novel Long Short Term Memory achieves an accuracy of 94.45% and Random Forest achieves 73.57% when it comes to summarising the text. According to the Independent Sample T-Test (p&lt;0.05), the accuracy significance level is 0.001. Final Thoughts: The Novel Long Short Term Memory method is Light Years ahead of Random Forest when it comes to text summarization accuracy.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0233047</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Algorithms ; Confidence intervals ; Forest management</subject><ispartof>AIP conference proceedings, 2024, Vol.3193 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids></links><search><contributor>Srinivasan, R</contributor><contributor>Balasubramanian, PL</contributor><contributor>Seenivasan, M</contributor><contributor>Sharma, T. Rakesh</contributor><contributor>Vijayan, V.</contributor><contributor>Babu, A. B. Karthick Anand</contributor><creatorcontrib>Rupesh, Kollaikal</creatorcontrib><creatorcontrib>Christy, S.</creatorcontrib><title>Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest</title><title>AIP conference proceedings</title><description>The goal of this proposed research is to find an alternative to the Random Forest method for text summarising that is both more accurate and more efficient in reducing lengthy texts to a manageable size. In order to summarise the text using a sample size of 63459 utilisingClincalc with a G power of 0.8, alpha of 0.05, and a 95% confidence level, we employed two algorithms: Novel Long Short Term Memory (N=10) and Random Forest (N=10). The level of correctness in the text summary is used to evaluate them. Results and Discussion: In the dataset, we find that Novel Long Short Term Memory achieves an accuracy of 94.45% and Random Forest achieves 73.57% when it comes to summarising the text. According to the Independent Sample T-Test (p&lt;0.05), the accuracy significance level is 0.001. Final Thoughts: The Novel Long Short Term Memory method is Light Years ahead of Random Forest when it comes to text summarization accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Confidence intervals</subject><subject>Forest management</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUMtOwzAQtBBIlMKBP7DEDSllbSd2c0RVeUiVuPTALXIdp3UVx8F2CuXMh-M-LvsYzexoFqF7AhMCnD0VE6CMQS4u0IgUBckEJ_wSjQDKPKM5-7xGNyFsAWgpxHSE_uY72Q4yahw3GkulBn9Yeq9ro6JxHXYNjvon4jBYK735lUd0CKZb487tdItbl8awcT4mprfYauv8Hst27byJG4tNh5WzfVKHJP1OGPayq53FjfM6xFt01cg26LtzH6Ply3w5e8sWH6_vs-dF1nMmMr0CCQWlK17ClExZyWtV1JyLXFLRSKoU4VBrrQBSclWLpsw5a5RqtBAlATZGD6ezvXdfQ_Kttm7wXXKsGKFciCLVxHo8sYIy8Ri26r1J0fcVgerw5Kqozk9m_4KycXg</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Rupesh, Kollaikal</creator><creator>Christy, S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241111</creationdate><title>Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest</title><author>Rupesh, Kollaikal ; Christy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p637-eb0a0522b690818396dc5d6674a27fa2cc160deec00155cd7f9463fccfe779103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Confidence intervals</topic><topic>Forest management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rupesh, Kollaikal</creatorcontrib><creatorcontrib>Christy, S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupesh, Kollaikal</au><au>Christy, S.</au><au>Srinivasan, R</au><au>Balasubramanian, PL</au><au>Seenivasan, M</au><au>Sharma, T. Rakesh</au><au>Vijayan, V.</au><au>Babu, A. B. Karthick Anand</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-11</date><risdate>2024</risdate><volume>3193</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The goal of this proposed research is to find an alternative to the Random Forest method for text summarising that is both more accurate and more efficient in reducing lengthy texts to a manageable size. In order to summarise the text using a sample size of 63459 utilisingClincalc with a G power of 0.8, alpha of 0.05, and a 95% confidence level, we employed two algorithms: Novel Long Short Term Memory (N=10) and Random Forest (N=10). The level of correctness in the text summary is used to evaluate them. Results and Discussion: In the dataset, we find that Novel Long Short Term Memory achieves an accuracy of 94.45% and Random Forest achieves 73.57% when it comes to summarising the text. According to the Independent Sample T-Test (p&lt;0.05), the accuracy significance level is 0.001. Final Thoughts: The Novel Long Short Term Memory method is Light Years ahead of Random Forest when it comes to text summarization accuracy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0233047</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3193 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3126775126
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Accuracy
Algorithms
Confidence intervals
Forest management
title Evaluate the accurate prediction of text summarization using novel long short term memory algorithm in comparison with random forest
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluate%20the%20accurate%20prediction%20of%20text%20summarization%20using%20novel%20long%20short%20term%20memory%20algorithm%20in%20comparison%20with%20random%20forest&rft.btitle=AIP%20conference%20proceedings&rft.au=Rupesh,%20Kollaikal&rft.date=2024-11-11&rft.volume=3193&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0233047&rft_dat=%3Cproquest_scita%3E3126775126%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p637-eb0a0522b690818396dc5d6674a27fa2cc160deec00155cd7f9463fccfe779103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126775126&rft_id=info:pmid/&rfr_iscdi=true