Loading…

Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation

We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2024-12, Vol.101 (3), p.79, Article 79
Main Authors: Liu, Sijing, Simoncini, Valeria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353
container_end_page
container_issue 3
container_start_page 79
container_title Journal of scientific computing
container_volume 101
creator Liu, Sijing
Simoncini, Valeria
description We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.
doi_str_mv 10.1007/s10915-024-02717-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126806385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126806385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOP68gKuA62p-2iZZyjiOwoiCug5Jm47RTjImqaIP4vOazgjuXNx74XDOCfkAOMHoDCPEziNGAlcFImUehlkhdsAEV4wWrBZ4F0wQ51XBSlbug4MYXxBCggsyAd-3Q5_sMtgW3gfTeNfaZL2zbgk7H-CljVlL1g1-iHCuehNerdvIwST7pUZzhL6DysFZ39t1sg28y3ulejjN0eD73Ox1b1bww6ZnqEb53TRjsrj0K-tUMi18SPnA2duwqTwCe53qozn-vYfg6Wr2OL0uFnfzm-nFomgIQqloOy04opyWjSYtr7A2hgiK25IrTbBWwmiGBdOckY5gwzpFKKJaZxqiphU9BKfb3nXwb4OJSb74Ibj8pKSY1BzVlI8usnU1wccYTCfXIX8wfEqM5MhfbvnLzF9u-EuRQ3Qbitnslib8Vf-T-gEBEIvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126806385</pqid></control><display><type>article</type><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><source>Springer Link</source><creator>Liu, Sijing ; Simoncini, Valeria</creator><creatorcontrib>Liu, Sijing ; Simoncini, Valeria</creatorcontrib><description>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02717-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Convection ; Diffusion barriers ; Diffusion rate ; Discretization ; Equations of state ; Galerkin method ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Multigrid methods ; Numerical analysis ; Optimal control ; Parameters ; Preconditioning ; Regularization ; Theoretical</subject><ispartof>Journal of scientific computing, 2024-12, Vol.101 (3), p.79, Article 79</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</cites><orcidid>0000-0002-0781-9866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Simoncini, Valeria</creatorcontrib><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convection</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Discretization</subject><subject>Equations of state</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Preconditioning</subject><subject>Regularization</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOP68gKuA62p-2iZZyjiOwoiCug5Jm47RTjImqaIP4vOazgjuXNx74XDOCfkAOMHoDCPEziNGAlcFImUehlkhdsAEV4wWrBZ4F0wQ51XBSlbug4MYXxBCggsyAd-3Q5_sMtgW3gfTeNfaZL2zbgk7H-CljVlL1g1-iHCuehNerdvIwST7pUZzhL6DysFZ39t1sg28y3ulejjN0eD73Ox1b1bww6ZnqEb53TRjsrj0K-tUMi18SPnA2duwqTwCe53qozn-vYfg6Wr2OL0uFnfzm-nFomgIQqloOy04opyWjSYtr7A2hgiK25IrTbBWwmiGBdOckY5gwzpFKKJaZxqiphU9BKfb3nXwb4OJSb74Ibj8pKSY1BzVlI8usnU1wccYTCfXIX8wfEqM5MhfbvnLzF9u-EuRQ3Qbitnslib8Vf-T-gEBEIvM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Sijing</creator><creator>Simoncini, Valeria</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0781-9866</orcidid></search><sort><creationdate>20241201</creationdate><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><author>Liu, Sijing ; Simoncini, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convection</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Discretization</topic><topic>Equations of state</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Preconditioning</topic><topic>Regularization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Simoncini, Valeria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sijing</au><au>Simoncini, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>101</volume><issue>3</issue><spage>79</spage><pages>79-</pages><artnum>79</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02717-9</doi><orcidid>https://orcid.org/0000-0002-0781-9866</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2024-12, Vol.101 (3), p.79, Article 79
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_journals_3126806385
source Springer Link
subjects Algorithms
Computational Mathematics and Numerical Analysis
Convection
Diffusion barriers
Diffusion rate
Discretization
Equations of state
Galerkin method
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Multigrid methods
Numerical analysis
Optimal control
Parameters
Preconditioning
Regularization
Theoretical
title Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20Preconditioning%20for%20Discontinuous%20Galerkin%20Discretizations%20of%20an%20Elliptic%20Optimal%20Control%20Problem%20with%20a%20Convection-Dominated%20State%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Liu,%20Sijing&rft.date=2024-12-01&rft.volume=101&rft.issue=3&rft.spage=79&rft.pages=79-&rft.artnum=79&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02717-9&rft_dat=%3Cproquest_cross%3E3126806385%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126806385&rft_id=info:pmid/&rfr_iscdi=true