Loading…
Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation
We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter ε and regularization parameter β explicitly tracked. We the...
Saved in:
Published in: | Journal of scientific computing 2024-12, Vol.101 (3), p.79, Article 79 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353 |
container_end_page | |
container_issue | 3 |
container_start_page | 79 |
container_title | Journal of scientific computing |
container_volume | 101 |
creator | Liu, Sijing Simoncini, Valeria |
description | We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter
ε
and regularization parameter
β
explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings. |
doi_str_mv | 10.1007/s10915-024-02717-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126806385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126806385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOP68gKuA62p-2iZZyjiOwoiCug5Jm47RTjImqaIP4vOazgjuXNx74XDOCfkAOMHoDCPEziNGAlcFImUehlkhdsAEV4wWrBZ4F0wQ51XBSlbug4MYXxBCggsyAd-3Q5_sMtgW3gfTeNfaZL2zbgk7H-CljVlL1g1-iHCuehNerdvIwST7pUZzhL6DysFZ39t1sg28y3ulejjN0eD73Ox1b1bww6ZnqEb53TRjsrj0K-tUMi18SPnA2duwqTwCe53qozn-vYfg6Wr2OL0uFnfzm-nFomgIQqloOy04opyWjSYtr7A2hgiK25IrTbBWwmiGBdOckY5gwzpFKKJaZxqiphU9BKfb3nXwb4OJSb74Ibj8pKSY1BzVlI8usnU1wccYTCfXIX8wfEqM5MhfbvnLzF9u-EuRQ3Qbitnslib8Vf-T-gEBEIvM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126806385</pqid></control><display><type>article</type><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><source>Springer Link</source><creator>Liu, Sijing ; Simoncini, Valeria</creator><creatorcontrib>Liu, Sijing ; Simoncini, Valeria</creatorcontrib><description>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter
ε
and regularization parameter
β
explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02717-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computational Mathematics and Numerical Analysis ; Convection ; Diffusion barriers ; Diffusion rate ; Discretization ; Equations of state ; Galerkin method ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Multigrid methods ; Numerical analysis ; Optimal control ; Parameters ; Preconditioning ; Regularization ; Theoretical</subject><ispartof>Journal of scientific computing, 2024-12, Vol.101 (3), p.79, Article 79</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</cites><orcidid>0000-0002-0781-9866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Simoncini, Valeria</creatorcontrib><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter
ε
and regularization parameter
β
explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</description><subject>Algorithms</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convection</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>Discretization</subject><subject>Equations of state</subject><subject>Galerkin method</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multigrid methods</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Parameters</subject><subject>Preconditioning</subject><subject>Regularization</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOP68gKuA62p-2iZZyjiOwoiCug5Jm47RTjImqaIP4vOazgjuXNx74XDOCfkAOMHoDCPEziNGAlcFImUehlkhdsAEV4wWrBZ4F0wQ51XBSlbug4MYXxBCggsyAd-3Q5_sMtgW3gfTeNfaZL2zbgk7H-CljVlL1g1-iHCuehNerdvIwST7pUZzhL6DysFZ39t1sg28y3ulejjN0eD73Ox1b1bww6ZnqEb53TRjsrj0K-tUMi18SPnA2duwqTwCe53qozn-vYfg6Wr2OL0uFnfzm-nFomgIQqloOy04opyWjSYtr7A2hgiK25IrTbBWwmiGBdOckY5gwzpFKKJaZxqiphU9BKfb3nXwb4OJSb74Ibj8pKSY1BzVlI8usnU1wccYTCfXIX8wfEqM5MhfbvnLzF9u-EuRQ3Qbitnslib8Vf-T-gEBEIvM</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Liu, Sijing</creator><creator>Simoncini, Valeria</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0781-9866</orcidid></search><sort><creationdate>20241201</creationdate><title>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</title><author>Liu, Sijing ; Simoncini, Valeria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convection</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>Discretization</topic><topic>Equations of state</topic><topic>Galerkin method</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multigrid methods</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Parameters</topic><topic>Preconditioning</topic><topic>Regularization</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Sijing</creatorcontrib><creatorcontrib>Simoncini, Valeria</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Sijing</au><au>Simoncini, Valeria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>101</volume><issue>3</issue><spage>79</spage><pages>79-</pages><artnum>79</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We consider discontinuous Galerkin methods for an elliptic distributed optimal control problem constrained by a convection-dominated problem. We prove global optimal convergence rates using an inf-sup condition, with the diffusion parameter
ε
and regularization parameter
β
explicitly tracked. We then propose a multilevel preconditioner based on downwind ordering to solve the discretized system. The preconditioner only requires two approximate solves of single convection-dominated equations using multigrid methods. Moreover, for the strongly convection-dominated case, only two sweeps of block Gauss-Seidel iterations are needed. We also derive a simple bound indicating the role played by the multigrid preconditioner. Numerical results are shown to support our findings.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10915-024-02717-9</doi><orcidid>https://orcid.org/0000-0002-0781-9866</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2024-12, Vol.101 (3), p.79, Article 79 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_journals_3126806385 |
source | Springer Link |
subjects | Algorithms Computational Mathematics and Numerical Analysis Convection Diffusion barriers Diffusion rate Discretization Equations of state Galerkin method Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Multigrid methods Numerical analysis Optimal control Parameters Preconditioning Regularization Theoretical |
title | Multigrid Preconditioning for Discontinuous Galerkin Discretizations of an Elliptic Optimal Control Problem with a Convection-Dominated State Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20Preconditioning%20for%20Discontinuous%20Galerkin%20Discretizations%20of%20an%20Elliptic%20Optimal%20Control%20Problem%20with%20a%20Convection-Dominated%20State%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Liu,%20Sijing&rft.date=2024-12-01&rft.volume=101&rft.issue=3&rft.spage=79&rft.pages=79-&rft.artnum=79&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02717-9&rft_dat=%3Cproquest_cross%3E3126806385%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-dfb9803834cb2d851bee2931d48ab21ba9eb7197b872f21e7fa2303bb88596353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126806385&rft_id=info:pmid/&rfr_iscdi=true |