Loading…

A high-efficiency variational quantum classifier for high-dimensional data

Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2025, Vol.81 (1), Article 154
Main Authors: Qi, Han, Xiao, Sihui, Liu, Zhuo, Gong, Changqing, Gani, Abdullah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523
container_end_page
container_issue 1
container_start_page
container_title The Journal of supercomputing
container_volume 81
creator Qi, Han
Xiao, Sihui
Liu, Zhuo
Gong, Changqing
Gani, Abdullah
description Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.
doi_str_mv 10.1007/s11227-024-06676-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127037807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127037807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRsFb_gKeA59XZr0x6LEWtUvCi52WzH-2WNml3E6H_3mgEb55mDu8NwyPklsE9A8CHzBjnSIFLCmWJJa3OyIQpFBRkJc_JBGYcaKUkvyRXOW8BQAoUE_I6LzZxvaE-hGijb-yp-DQpmi62jdkVx940Xb8v7M7kHEP0qQhtGhUX977JI-dMZ67JRTC77G9-55R8PD2-L5Z09fb8spivqOUAHXUgXUDmggEsh5WVdQDuKhQ1shqdEaK2RjpTS4ki1E6xmbLeSKlmpVJcTMndePeQ2mPvc6e3bZ-GL7IWjCMIrAAHio-UTW3OyQd9SHFv0kkz0N_N9NhMD830TzNdDZIYpTzAzdqnv9P_WF-aR29-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127037807</pqid></control><display><type>article</type><title>A high-efficiency variational quantum classifier for high-dimensional data</title><source>Springer Link</source><creator>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</creator><creatorcontrib>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</creatorcontrib><description>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06676-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Compilers ; Computer Science ; Interpreters ; Processor Architectures ; Programming Languages ; Qubits (quantum computing)</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 154</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Qi, Han</creatorcontrib><creatorcontrib>Xiao, Sihui</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Gong, Changqing</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><title>A high-efficiency variational quantum classifier for high-dimensional data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Qubits (quantum computing)</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRsFb_gKeA59XZr0x6LEWtUvCi52WzH-2WNml3E6H_3mgEb55mDu8NwyPklsE9A8CHzBjnSIFLCmWJJa3OyIQpFBRkJc_JBGYcaKUkvyRXOW8BQAoUE_I6LzZxvaE-hGijb-yp-DQpmi62jdkVx940Xb8v7M7kHEP0qQhtGhUX977JI-dMZ67JRTC77G9-55R8PD2-L5Z09fb8spivqOUAHXUgXUDmggEsh5WVdQDuKhQ1shqdEaK2RjpTS4ki1E6xmbLeSKlmpVJcTMndePeQ2mPvc6e3bZ-GL7IWjCMIrAAHio-UTW3OyQd9SHFv0kkz0N_N9NhMD830TzNdDZIYpTzAzdqnv9P_WF-aR29-</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Qi, Han</creator><creator>Xiao, Sihui</creator><creator>Liu, Zhuo</creator><creator>Gong, Changqing</creator><creator>Gani, Abdullah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>A high-efficiency variational quantum classifier for high-dimensional data</title><author>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Han</creatorcontrib><creatorcontrib>Xiao, Sihui</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Gong, Changqing</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Han</au><au>Xiao, Sihui</au><au>Liu, Zhuo</au><au>Gong, Changqing</au><au>Gani, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-efficiency variational quantum classifier for high-dimensional data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>154</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06676-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2025, Vol.81 (1), Article 154
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3127037807
source Springer Link
subjects Algorithms
Classification
Compilers
Computer Science
Interpreters
Processor Architectures
Programming Languages
Qubits (quantum computing)
title A high-efficiency variational quantum classifier for high-dimensional data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-efficiency%20variational%20quantum%20classifier%20for%20high-dimensional%20data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Qi,%20Han&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=154&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06676-8&rft_dat=%3Cproquest_cross%3E3127037807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127037807&rft_id=info:pmid/&rfr_iscdi=true