Loading…
A high-efficiency variational quantum classifier for high-dimensional data
Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The...
Saved in:
Published in: | The Journal of supercomputing 2025, Vol.81 (1), Article 154 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | The Journal of supercomputing |
container_volume | 81 |
creator | Qi, Han Xiao, Sihui Liu, Zhuo Gong, Changqing Gani, Abdullah |
description | Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance. |
doi_str_mv | 10.1007/s11227-024-06676-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127037807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127037807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQQBdRsFb_gKeA59XZr0x6LEWtUvCi52WzH-2WNml3E6H_3mgEb55mDu8NwyPklsE9A8CHzBjnSIFLCmWJJa3OyIQpFBRkJc_JBGYcaKUkvyRXOW8BQAoUE_I6LzZxvaE-hGijb-yp-DQpmi62jdkVx940Xb8v7M7kHEP0qQhtGhUX977JI-dMZ67JRTC77G9-55R8PD2-L5Z09fb8spivqOUAHXUgXUDmggEsh5WVdQDuKhQ1shqdEaK2RjpTS4ki1E6xmbLeSKlmpVJcTMndePeQ2mPvc6e3bZ-GL7IWjCMIrAAHio-UTW3OyQd9SHFv0kkz0N_N9NhMD830TzNdDZIYpTzAzdqnv9P_WF-aR29-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127037807</pqid></control><display><type>article</type><title>A high-efficiency variational quantum classifier for high-dimensional data</title><source>Springer Link</source><creator>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</creator><creatorcontrib>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</creatorcontrib><description>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06676-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Classification ; Compilers ; Computer Science ; Interpreters ; Processor Architectures ; Programming Languages ; Qubits (quantum computing)</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 154</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Qi, Han</creatorcontrib><creatorcontrib>Xiao, Sihui</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Gong, Changqing</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><title>A high-efficiency variational quantum classifier for high-dimensional data</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Interpreters</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Qubits (quantum computing)</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQQBdRsFb_gKeA59XZr0x6LEWtUvCi52WzH-2WNml3E6H_3mgEb55mDu8NwyPklsE9A8CHzBjnSIFLCmWJJa3OyIQpFBRkJc_JBGYcaKUkvyRXOW8BQAoUE_I6LzZxvaE-hGijb-yp-DQpmi62jdkVx940Xb8v7M7kHEP0qQhtGhUX977JI-dMZ67JRTC77G9-55R8PD2-L5Z09fb8spivqOUAHXUgXUDmggEsh5WVdQDuKhQ1shqdEaK2RjpTS4ki1E6xmbLeSKlmpVJcTMndePeQ2mPvc6e3bZ-GL7IWjCMIrAAHio-UTW3OyQd9SHFv0kkz0N_N9NhMD830TzNdDZIYpTzAzdqnv9P_WF-aR29-</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Qi, Han</creator><creator>Xiao, Sihui</creator><creator>Liu, Zhuo</creator><creator>Gong, Changqing</creator><creator>Gani, Abdullah</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>A high-efficiency variational quantum classifier for high-dimensional data</title><author>Qi, Han ; Xiao, Sihui ; Liu, Zhuo ; Gong, Changqing ; Gani, Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Interpreters</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Han</creatorcontrib><creatorcontrib>Xiao, Sihui</creatorcontrib><creatorcontrib>Liu, Zhuo</creatorcontrib><creatorcontrib>Gong, Changqing</creatorcontrib><creatorcontrib>Gani, Abdullah</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Han</au><au>Xiao, Sihui</au><au>Liu, Zhuo</au><au>Gong, Changqing</au><au>Gani, Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-efficiency variational quantum classifier for high-dimensional data</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>154</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Variational quantum algorithms (VQAs) are most promising to show quantum advantages on noisy intermediate-scale quantum devices. Variational quantum classifiers (VQCs) are widely applied to classification tasks in the quantum domain. However, VQCs cannot show advantages in high-dimensional data. The large number of features necessitates the use of a significant number of qubits in VQCs. This results in long training time and increases training difficulty, ultimately leading to poor classification performance. In this paper, in order to enhance the ability of VQCs to handle high-dimensional data, a high-efficiency variational quantum classifier (HE-VQC) is proposed. Comparative Qiskit simulations of HE-VQC and four common VQCs were conducted on the UNSW-NB15 dataset. The simulation results show that HE-VQC significantly reduces training time while delivering superior classification performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06676-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2025, Vol.81 (1), Article 154 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3127037807 |
source | Springer Link |
subjects | Algorithms Classification Compilers Computer Science Interpreters Processor Architectures Programming Languages Qubits (quantum computing) |
title | A high-efficiency variational quantum classifier for high-dimensional data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-efficiency%20variational%20quantum%20classifier%20for%20high-dimensional%20data&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Qi,%20Han&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=154&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06676-8&rft_dat=%3Cproquest_cross%3E3127037807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-d04df71dfa0764df16bf02d873b71b7da33bca4dab4473fbd5195cea445965523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127037807&rft_id=info:pmid/&rfr_iscdi=true |