Loading…

Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space

This paper aims to reconstruct hundreds of people's 3D poses, shapes, and locations from a single image with unknown camera parameters. Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstru...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Huang, Jing, Wen, Hao, Zhou, Tianyi, Lin, Haozhe, Yu-Kun, Lai, Li, Kun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Jing
Wen, Hao
Zhou, Tianyi
Lin, Haozhe
Yu-Kun, Lai
Li, Kun
description This paper aims to reconstruct hundreds of people's 3D poses, shapes, and locations from a single image with unknown camera parameters. Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstruction and accurate reprojection. To address these challenges, we first propose Crowd3D, which leverages a new concept, Human-scene Virtual Interaction Point (HVIP), to convert the complex 3D human localization into 2D-pixel localization with robust camera and ground estimation to achieve globally consistent reconstruction. To achieve stable generalization on different camera FoVs without test-time optimization, we propose an extended version, Crowd3D++, which eliminates the influence of camera parameters and the cropping operation by the proposed canonical upright space and ground-aware normalization transform. In the defined upright space, Crowd3D++ also designs an HVIPNet to regress 2D HVIP and infer the depths. Besides, we contribute two benchmark datasets, LargeCrowd and SyntheticCrowd, for evaluating crowd reconstruction in large scenes. The source code and data will be made publicly available after acceptance.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3127419322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127419322</sourcerecordid><originalsourceid>FETCH-proquest_journals_31274193223</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FEHvaFZbK9q0sVrLNE2pyFybH3z9InqAVmfxnQkLkPM0XmeIMxZa2yVJgqsC85wHrCwNjXe-i6ItVHTz1sGJNEnfCwNfg0pJ0tYZL11LGsbWNXAdTPtsHJwHIdWCTR-ityr8dc6Wh_2lPMaDoZdX1tUdeaM_VPMUiyzdcET-3_UGm-w5jQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127419322</pqid></control><display><type>article</type><title>Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space</title><source>Publicly Available Content (ProQuest)</source><creator>Huang, Jing ; Wen, Hao ; Zhou, Tianyi ; Lin, Haozhe ; Yu-Kun, Lai ; Li, Kun</creator><creatorcontrib>Huang, Jing ; Wen, Hao ; Zhou, Tianyi ; Lin, Haozhe ; Yu-Kun, Lai ; Li, Kun</creatorcontrib><description>This paper aims to reconstruct hundreds of people's 3D poses, shapes, and locations from a single image with unknown camera parameters. Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstruction and accurate reprojection. To address these challenges, we first propose Crowd3D, which leverages a new concept, Human-scene Virtual Interaction Point (HVIP), to convert the complex 3D human localization into 2D-pixel localization with robust camera and ground estimation to achieve globally consistent reconstruction. To achieve stable generalization on different camera FoVs without test-time optimization, we propose an extended version, Crowd3D++, which eliminates the influence of camera parameters and the cropping operation by the proposed canonical upright space and ground-aware normalization transform. In the defined upright space, Crowd3D++ also designs an HVIPNet to regress 2D HVIP and infer the depths. Besides, we contribute two benchmark datasets, LargeCrowd and SyntheticCrowd, for evaluating crowd reconstruction in large scenes. The source code and data will be made publicly available after acceptance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cameras ; Image reconstruction ; Localization ; Parameters ; Robustness ; Source code ; Virtual reality</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3127419322?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Wen, Hao</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Lin, Haozhe</creatorcontrib><creatorcontrib>Yu-Kun, Lai</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><title>Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space</title><title>arXiv.org</title><description>This paper aims to reconstruct hundreds of people's 3D poses, shapes, and locations from a single image with unknown camera parameters. Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstruction and accurate reprojection. To address these challenges, we first propose Crowd3D, which leverages a new concept, Human-scene Virtual Interaction Point (HVIP), to convert the complex 3D human localization into 2D-pixel localization with robust camera and ground estimation to achieve globally consistent reconstruction. To achieve stable generalization on different camera FoVs without test-time optimization, we propose an extended version, Crowd3D++, which eliminates the influence of camera parameters and the cropping operation by the proposed canonical upright space and ground-aware normalization transform. In the defined upright space, Crowd3D++ also designs an HVIPNet to regress 2D HVIP and infer the depths. Besides, we contribute two benchmark datasets, LargeCrowd and SyntheticCrowd, for evaluating crowd reconstruction in large scenes. The source code and data will be made publicly available after acceptance.</description><subject>Cameras</subject><subject>Image reconstruction</subject><subject>Localization</subject><subject>Parameters</subject><subject>Robustness</subject><subject>Source code</subject><subject>Virtual reality</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FEHvaFZbK9q0sVrLNE2pyFybH3z9InqAVmfxnQkLkPM0XmeIMxZa2yVJgqsC85wHrCwNjXe-i6ItVHTz1sGJNEnfCwNfg0pJ0tYZL11LGsbWNXAdTPtsHJwHIdWCTR-ityr8dc6Wh_2lPMaDoZdX1tUdeaM_VPMUiyzdcET-3_UGm-w5jQ</recordid><startdate>20241109</startdate><enddate>20241109</enddate><creator>Huang, Jing</creator><creator>Wen, Hao</creator><creator>Zhou, Tianyi</creator><creator>Lin, Haozhe</creator><creator>Yu-Kun, Lai</creator><creator>Li, Kun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241109</creationdate><title>Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space</title><author>Huang, Jing ; Wen, Hao ; Zhou, Tianyi ; Lin, Haozhe ; Yu-Kun, Lai ; Li, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31274193223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Image reconstruction</topic><topic>Localization</topic><topic>Parameters</topic><topic>Robustness</topic><topic>Source code</topic><topic>Virtual reality</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jing</creatorcontrib><creatorcontrib>Wen, Hao</creatorcontrib><creatorcontrib>Zhou, Tianyi</creatorcontrib><creatorcontrib>Lin, Haozhe</creatorcontrib><creatorcontrib>Yu-Kun, Lai</creatorcontrib><creatorcontrib>Li, Kun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jing</au><au>Wen, Hao</au><au>Zhou, Tianyi</au><au>Lin, Haozhe</au><au>Yu-Kun, Lai</au><au>Li, Kun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space</atitle><jtitle>arXiv.org</jtitle><date>2024-11-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper aims to reconstruct hundreds of people's 3D poses, shapes, and locations from a single image with unknown camera parameters. Due to the small and highly varying 2D human scales, depth ambiguity, and perspective distortion, no existing methods can achieve globally consistent reconstruction and accurate reprojection. To address these challenges, we first propose Crowd3D, which leverages a new concept, Human-scene Virtual Interaction Point (HVIP), to convert the complex 3D human localization into 2D-pixel localization with robust camera and ground estimation to achieve globally consistent reconstruction. To achieve stable generalization on different camera FoVs without test-time optimization, we propose an extended version, Crowd3D++, which eliminates the influence of camera parameters and the cropping operation by the proposed canonical upright space and ground-aware normalization transform. In the defined upright space, Crowd3D++ also designs an HVIPNet to regress 2D HVIP and infer the depths. Besides, we contribute two benchmark datasets, LargeCrowd and SyntheticCrowd, for evaluating crowd reconstruction in large scenes. The source code and data will be made publicly available after acceptance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3127419322
source Publicly Available Content (ProQuest)
subjects Cameras
Image reconstruction
Localization
Parameters
Robustness
Source code
Virtual reality
title Crowd3D++: Robust Monocular Crowd Reconstruction with Upright Space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Crowd3D++:%20Robust%20Monocular%20Crowd%20Reconstruction%20with%20Upright%20Space&rft.jtitle=arXiv.org&rft.au=Huang,%20Jing&rft.date=2024-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3127419322%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_31274193223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127419322&rft_id=info:pmid/&rfr_iscdi=true