Loading…

Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026

ABE fermentation has been used to produce biobutanol for a long period of time. The main obstacles consisted of low productivity and cell viability. In this work, the immobilization technique was applied to improve cell culture over the free cell fermentation. Three types of carbonized biomass, cass...

Full description

Saved in:
Bibliographic Details
Published in:Biomass conversion and biorefinery 2024, Vol.14 (22), p.28105-28115
Main Authors: Sae-hun, Sarita, Chinwatpaiboon, Piyawat, Boonsombuti, Akarin, Savarajara, Ancharida, Luengnaruemitchai, Apanee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-3da1b840dd6fda0ded42512f869bf3b60a3da5cb620ad0305e16562717e05c163
container_end_page 28115
container_issue 22
container_start_page 28105
container_title Biomass conversion and biorefinery
container_volume 14
creator Sae-hun, Sarita
Chinwatpaiboon, Piyawat
Boonsombuti, Akarin
Savarajara, Ancharida
Luengnaruemitchai, Apanee
description ABE fermentation has been used to produce biobutanol for a long period of time. The main obstacles consisted of low productivity and cell viability. In this work, the immobilization technique was applied to improve cell culture over the free cell fermentation. Three types of carbonized biomass, cassava rhizome charcoal (CRC), bamboo charcoal (BC), and coconut shell activated carbon (CSAC), were selected and used as carriers for the immobilization of Clostridium beijerinckii JCM 8026. They were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) to expose their surface and chemical properties. The results pointed out that the immobilized cell onto BC can produce butanol higher than the free cell while lessened by 8.7% and 19.7% in CRC and CSAC, respectively. However, CRC showed the highest cell efficiency after eight sequential reuse cycles. The improvement in butanol production is due to the surface area and the pore size of each of the carbonized materials. This work revealed the potential of carbonized biomass as a carrier, which can result in repeated inoculum and improved cell viability.
doi_str_mv 10.1007/s13399-022-03523-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127626151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127626151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3da1b840dd6fda0ded42512f869bf3b60a3da5cb620ad0305e16562717e05c163</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEElXpH2CyxAKD4Ww3TjKWqHypiAVmy44dcEnsYidDO_LLSQmCDemk94bnuZPeJDklcEkAsqtIGCsKDJRiYClluDhIJpQUgHlO2eHvTtLjZBbjGgAoy1jOYJJ8ljIo7-zOaKSsb2WMSA7jkG1br2xjd7Kz3qFKhmBNQNYhWZnOO4NV30nnG2y6t32i88X18gLVJrTGdaOltqhsfOyC1bZvkTJ2bYJ11bu16KF8RDlQfpIc1bKJZvaT0-TlZvlc3uHV0-19uVjhigJ0mGlJVD4HrXmtJWij5zQltM55oWqmOMiBSCvFKUgNDFJDeMppRjIDaUU4myZn491N8B-9iZ1Y-z644aVghGaccpKSgaIjVQUfYzC12ATbyrAVBMS-bjHWLYa6xXfdohgkNkpxgN2rCX-n_7G-AE2fgvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127626151</pqid></control><display><type>article</type><title>Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Sae-hun, Sarita ; Chinwatpaiboon, Piyawat ; Boonsombuti, Akarin ; Savarajara, Ancharida ; Luengnaruemitchai, Apanee</creator><creatorcontrib>Sae-hun, Sarita ; Chinwatpaiboon, Piyawat ; Boonsombuti, Akarin ; Savarajara, Ancharida ; Luengnaruemitchai, Apanee</creatorcontrib><description>ABE fermentation has been used to produce biobutanol for a long period of time. The main obstacles consisted of low productivity and cell viability. In this work, the immobilization technique was applied to improve cell culture over the free cell fermentation. Three types of carbonized biomass, cassava rhizome charcoal (CRC), bamboo charcoal (BC), and coconut shell activated carbon (CSAC), were selected and used as carriers for the immobilization of Clostridium beijerinckii JCM 8026. They were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) to expose their surface and chemical properties. The results pointed out that the immobilized cell onto BC can produce butanol higher than the free cell while lessened by 8.7% and 19.7% in CRC and CSAC, respectively. However, CRC showed the highest cell efficiency after eight sequential reuse cycles. The improvement in butanol production is due to the surface area and the pore size of each of the carbonized materials. This work revealed the potential of carbonized biomass as a carrier, which can result in repeated inoculum and improved cell viability.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-022-03523-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Biomass ; Biotechnology ; Butanol ; Cassava ; Charcoal ; Chemical properties ; Energy ; Ethanol ; Fermentation ; Fourier transforms ; Immobilization ; Infrared analysis ; Infrared spectroscopy ; Inoculum ; Original Article ; Pore size ; Renewable and Green Energy ; Surface area ; Zeta potential</subject><ispartof>Biomass conversion and biorefinery, 2024, Vol.14 (22), p.28105-28115</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3da1b840dd6fda0ded42512f869bf3b60a3da5cb620ad0305e16562717e05c163</cites><orcidid>0000-0003-2552-3898</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Sae-hun, Sarita</creatorcontrib><creatorcontrib>Chinwatpaiboon, Piyawat</creatorcontrib><creatorcontrib>Boonsombuti, Akarin</creatorcontrib><creatorcontrib>Savarajara, Ancharida</creatorcontrib><creatorcontrib>Luengnaruemitchai, Apanee</creatorcontrib><title>Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>ABE fermentation has been used to produce biobutanol for a long period of time. The main obstacles consisted of low productivity and cell viability. In this work, the immobilization technique was applied to improve cell culture over the free cell fermentation. Three types of carbonized biomass, cassava rhizome charcoal (CRC), bamboo charcoal (BC), and coconut shell activated carbon (CSAC), were selected and used as carriers for the immobilization of Clostridium beijerinckii JCM 8026. They were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) to expose their surface and chemical properties. The results pointed out that the immobilized cell onto BC can produce butanol higher than the free cell while lessened by 8.7% and 19.7% in CRC and CSAC, respectively. However, CRC showed the highest cell efficiency after eight sequential reuse cycles. The improvement in butanol production is due to the surface area and the pore size of each of the carbonized materials. This work revealed the potential of carbonized biomass as a carrier, which can result in repeated inoculum and improved cell viability.</description><subject>Activated carbon</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Butanol</subject><subject>Cassava</subject><subject>Charcoal</subject><subject>Chemical properties</subject><subject>Energy</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fourier transforms</subject><subject>Immobilization</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Inoculum</subject><subject>Original Article</subject><subject>Pore size</subject><subject>Renewable and Green Energy</subject><subject>Surface area</subject><subject>Zeta potential</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhiMEElXpH2CyxAKD4Ww3TjKWqHypiAVmy44dcEnsYidDO_LLSQmCDemk94bnuZPeJDklcEkAsqtIGCsKDJRiYClluDhIJpQUgHlO2eHvTtLjZBbjGgAoy1jOYJJ8ljIo7-zOaKSsb2WMSA7jkG1br2xjd7Kz3qFKhmBNQNYhWZnOO4NV30nnG2y6t32i88X18gLVJrTGdaOltqhsfOyC1bZvkTJ2bYJ11bu16KF8RDlQfpIc1bKJZvaT0-TlZvlc3uHV0-19uVjhigJ0mGlJVD4HrXmtJWij5zQltM55oWqmOMiBSCvFKUgNDFJDeMppRjIDaUU4myZn491N8B-9iZ1Y-z644aVghGaccpKSgaIjVQUfYzC12ATbyrAVBMS-bjHWLYa6xXfdohgkNkpxgN2rCX-n_7G-AE2fgvY</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Sae-hun, Sarita</creator><creator>Chinwatpaiboon, Piyawat</creator><creator>Boonsombuti, Akarin</creator><creator>Savarajara, Ancharida</creator><creator>Luengnaruemitchai, Apanee</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2552-3898</orcidid></search><sort><creationdate>2024</creationdate><title>Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026</title><author>Sae-hun, Sarita ; Chinwatpaiboon, Piyawat ; Boonsombuti, Akarin ; Savarajara, Ancharida ; Luengnaruemitchai, Apanee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3da1b840dd6fda0ded42512f869bf3b60a3da5cb620ad0305e16562717e05c163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Butanol</topic><topic>Cassava</topic><topic>Charcoal</topic><topic>Chemical properties</topic><topic>Energy</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fourier transforms</topic><topic>Immobilization</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Inoculum</topic><topic>Original Article</topic><topic>Pore size</topic><topic>Renewable and Green Energy</topic><topic>Surface area</topic><topic>Zeta potential</topic><toplevel>online_resources</toplevel><creatorcontrib>Sae-hun, Sarita</creatorcontrib><creatorcontrib>Chinwatpaiboon, Piyawat</creatorcontrib><creatorcontrib>Boonsombuti, Akarin</creatorcontrib><creatorcontrib>Savarajara, Ancharida</creatorcontrib><creatorcontrib>Luengnaruemitchai, Apanee</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sae-hun, Sarita</au><au>Chinwatpaiboon, Piyawat</au><au>Boonsombuti, Akarin</au><au>Savarajara, Ancharida</au><au>Luengnaruemitchai, Apanee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2024</date><risdate>2024</risdate><volume>14</volume><issue>22</issue><spage>28105</spage><epage>28115</epage><pages>28105-28115</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>ABE fermentation has been used to produce biobutanol for a long period of time. The main obstacles consisted of low productivity and cell viability. In this work, the immobilization technique was applied to improve cell culture over the free cell fermentation. Three types of carbonized biomass, cassava rhizome charcoal (CRC), bamboo charcoal (BC), and coconut shell activated carbon (CSAC), were selected and used as carriers for the immobilization of Clostridium beijerinckii JCM 8026. They were characterized by Brunauer–Emmett–Teller (BET) surface area analysis, zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) to expose their surface and chemical properties. The results pointed out that the immobilized cell onto BC can produce butanol higher than the free cell while lessened by 8.7% and 19.7% in CRC and CSAC, respectively. However, CRC showed the highest cell efficiency after eight sequential reuse cycles. The improvement in butanol production is due to the surface area and the pore size of each of the carbonized materials. This work revealed the potential of carbonized biomass as a carrier, which can result in repeated inoculum and improved cell viability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-022-03523-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2552-3898</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2024, Vol.14 (22), p.28105-28115
issn 2190-6815
2190-6823
language eng
recordid cdi_proquest_journals_3127626151
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Activated carbon
Biomass
Biotechnology
Butanol
Cassava
Charcoal
Chemical properties
Energy
Ethanol
Fermentation
Fourier transforms
Immobilization
Infrared analysis
Infrared spectroscopy
Inoculum
Original Article
Pore size
Renewable and Green Energy
Surface area
Zeta potential
title Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonized%20biomass%20as%20an%20immobilization%20carrier%20in%20acetone-butanol-ethanol%20(ABE)%20fermentation%20by%20Clostridium%20beijerinckii%20JCM%208026&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Sae-hun,%20Sarita&rft.date=2024&rft.volume=14&rft.issue=22&rft.spage=28105&rft.epage=28115&rft.pages=28105-28115&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-022-03523-9&rft_dat=%3Cproquest_cross%3E3127626151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-3da1b840dd6fda0ded42512f869bf3b60a3da5cb620ad0305e16562717e05c163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127626151&rft_id=info:pmid/&rfr_iscdi=true