Loading…

Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression

Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.164606-164620
Main Authors: Nguyen, An Thien Huu, Singh, Anshuman, Huy, Truong Hoang Bao, Tran, Trung Thai, Nguyen, Hung Dinh, Slootweg, J. G., Nguyen, Phuong Hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93
container_end_page 164620
container_issue
container_start_page 164606
container_title IEEE access
container_volume 12
creator Nguyen, An Thien Huu
Singh, Anshuman
Huy, Truong Hoang Bao
Tran, Trung Thai
Nguyen, Hung Dinh
Slootweg, J. G.
Nguyen, Phuong Hong
description Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.
doi_str_mv 10.1109/ACCESS.2024.3492064
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127777240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10744413</ieee_id><doaj_id>oai_doaj_org_article_13e6ee585bb0491d820862f4544bb854</doaj_id><sourcerecordid>3127777240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</originalsourceid><addsrcrecordid>eNpNkd9r2zAQx83YYKXNX7A9CPbsTL9jP7Ym6QqBjmV9FpJ8dhVsK5WUkeyvn1KX0Xu54-6-nzv4FsUXgpeE4Pr7bdOsd7slxZQvGa8plvxDcUWJrEsmmPz4rv5cLGLc4xxVbonVVXFqnvVkoWz8FFPQboIWPR6SG91fnZyfUOcD2gxwcsYNLp3Rz-D_uHiZbIIfUXoGtPVWD2g9QejPqPHjeJxcchDRU3RTn8e9S-Wdjhn9C_oA8SK_KT51eoiweMvXxdNm_bv5UW4f7x-a221paVWnkteYA5eGicqsrDDCgpBYVryzAqwmUkvGWmhbwB222GDOmamJZZoA0VCz6-Jh5rZe79UhuFGHs_LaqdeGD73SITk7gCIMJICohMmYmrQVxZWkHRecG1MJnlnfZtYh-JcjxKT2_him_L5ihK5yUI7zFpu3bPAxBuj-XyVYXRxTs2Pq4ph6cyyrvs4qBwDvFCvOOWHsHyNFky0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777240</pqid></control><display><type>article</type><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><source>IEEE Xplore Open Access Journals</source><creator>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</creator><creatorcontrib>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</creatorcontrib><description>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492064</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chance-constrained optimization ; Computing time ; Constraints ; Correlation ; Costs ; Electric potential ; Electric vehicles ; Energy sources ; Errors ; Flexibility ; flexibility provision ; Flexible printed circuits ; logit-based regression ; Mathematical models ; Optimization ; Photovoltaic systems ; Power management ; Real-time systems ; rolling horizon ; second-order cone programming ; Stakeholders ; Statistical analysis ; Uncertainty ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2024, Vol.12, p.164606-164620</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</cites><orcidid>0009-0001-8178-6927 ; 0000-0002-7742-8967 ; 0000-0001-5073-4481 ; 0000-0003-2610-5161 ; 0000-0003-1124-2710 ; 0000-0002-0037-5449 ; 0000-0003-1593-1839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10744413$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Nguyen, An Thien Huu</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Huy, Truong Hoang Bao</creatorcontrib><creatorcontrib>Tran, Trung Thai</creatorcontrib><creatorcontrib>Nguyen, Hung Dinh</creatorcontrib><creatorcontrib>Slootweg, J. G.</creatorcontrib><creatorcontrib>Nguyen, Phuong Hong</creatorcontrib><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</description><subject>Chance-constrained optimization</subject><subject>Computing time</subject><subject>Constraints</subject><subject>Correlation</subject><subject>Costs</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Energy sources</subject><subject>Errors</subject><subject>Flexibility</subject><subject>flexibility provision</subject><subject>Flexible printed circuits</subject><subject>logit-based regression</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Photovoltaic systems</subject><subject>Power management</subject><subject>Real-time systems</subject><subject>rolling horizon</subject><subject>second-order cone programming</subject><subject>Stakeholders</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9r2zAQx83YYKXNX7A9CPbsTL9jP7Ym6QqBjmV9FpJ8dhVsK5WUkeyvn1KX0Xu54-6-nzv4FsUXgpeE4Pr7bdOsd7slxZQvGa8plvxDcUWJrEsmmPz4rv5cLGLc4xxVbonVVXFqnvVkoWz8FFPQboIWPR6SG91fnZyfUOcD2gxwcsYNLp3Rz-D_uHiZbIIfUXoGtPVWD2g9QejPqPHjeJxcchDRU3RTn8e9S-Wdjhn9C_oA8SK_KT51eoiweMvXxdNm_bv5UW4f7x-a221paVWnkteYA5eGicqsrDDCgpBYVryzAqwmUkvGWmhbwB222GDOmamJZZoA0VCz6-Jh5rZe79UhuFGHs_LaqdeGD73SITk7gCIMJICohMmYmrQVxZWkHRecG1MJnlnfZtYh-JcjxKT2_him_L5ihK5yUI7zFpu3bPAxBuj-XyVYXRxTs2Pq4ph6cyyrvs4qBwDvFCvOOWHsHyNFky0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nguyen, An Thien Huu</creator><creator>Singh, Anshuman</creator><creator>Huy, Truong Hoang Bao</creator><creator>Tran, Trung Thai</creator><creator>Nguyen, Hung Dinh</creator><creator>Slootweg, J. G.</creator><creator>Nguyen, Phuong Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-8178-6927</orcidid><orcidid>https://orcid.org/0000-0002-7742-8967</orcidid><orcidid>https://orcid.org/0000-0001-5073-4481</orcidid><orcidid>https://orcid.org/0000-0003-2610-5161</orcidid><orcidid>https://orcid.org/0000-0003-1124-2710</orcidid><orcidid>https://orcid.org/0000-0002-0037-5449</orcidid><orcidid>https://orcid.org/0000-0003-1593-1839</orcidid></search><sort><creationdate>2024</creationdate><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><author>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chance-constrained optimization</topic><topic>Computing time</topic><topic>Constraints</topic><topic>Correlation</topic><topic>Costs</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Energy sources</topic><topic>Errors</topic><topic>Flexibility</topic><topic>flexibility provision</topic><topic>Flexible printed circuits</topic><topic>logit-based regression</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Photovoltaic systems</topic><topic>Power management</topic><topic>Real-time systems</topic><topic>rolling horizon</topic><topic>second-order cone programming</topic><topic>Stakeholders</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, An Thien Huu</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Huy, Truong Hoang Bao</creatorcontrib><creatorcontrib>Tran, Trung Thai</creatorcontrib><creatorcontrib>Nguyen, Hung Dinh</creatorcontrib><creatorcontrib>Slootweg, J. G.</creatorcontrib><creatorcontrib>Nguyen, Phuong Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, An Thien Huu</au><au>Singh, Anshuman</au><au>Huy, Truong Hoang Bao</au><au>Tran, Trung Thai</au><au>Nguyen, Hung Dinh</au><au>Slootweg, J. G.</au><au>Nguyen, Phuong Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>164606</spage><epage>164620</epage><pages>164606-164620</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492064</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0001-8178-6927</orcidid><orcidid>https://orcid.org/0000-0002-7742-8967</orcidid><orcidid>https://orcid.org/0000-0001-5073-4481</orcidid><orcidid>https://orcid.org/0000-0003-2610-5161</orcidid><orcidid>https://orcid.org/0000-0003-1124-2710</orcidid><orcidid>https://orcid.org/0000-0002-0037-5449</orcidid><orcidid>https://orcid.org/0000-0003-1593-1839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.164606-164620
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3127777240
source IEEE Xplore Open Access Journals
subjects Chance-constrained optimization
Computing time
Constraints
Correlation
Costs
Electric potential
Electric vehicles
Energy sources
Errors
Flexibility
flexibility provision
Flexible printed circuits
logit-based regression
Mathematical models
Optimization
Photovoltaic systems
Power management
Real-time systems
rolling horizon
second-order cone programming
Stakeholders
Statistical analysis
Uncertainty
Voltage
Voltage control
title Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chance-Constrained%20Optimization%20for%20Flexibility%20Provision%20From%20the%20Local%20Energy%20Communities%20Using%20Logit-Based%20Regression&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20An%20Thien%20Huu&rft.date=2024&rft.volume=12&rft.spage=164606&rft.epage=164620&rft.pages=164606-164620&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492064&rft_dat=%3Cproquest_cross%3E3127777240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127777240&rft_id=info:pmid/&rft_ieee_id=10744413&rfr_iscdi=true