Loading…
Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression
Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on t...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.164606-164620 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93 |
container_end_page | 164620 |
container_issue | |
container_start_page | 164606 |
container_title | IEEE access |
container_volume | 12 |
creator | Nguyen, An Thien Huu Singh, Anshuman Huy, Truong Hoang Bao Tran, Trung Thai Nguyen, Hung Dinh Slootweg, J. G. Nguyen, Phuong Hong |
description | Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost. |
doi_str_mv | 10.1109/ACCESS.2024.3492064 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127777240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10744413</ieee_id><doaj_id>oai_doaj_org_article_13e6ee585bb0491d820862f4544bb854</doaj_id><sourcerecordid>3127777240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</originalsourceid><addsrcrecordid>eNpNkd9r2zAQx83YYKXNX7A9CPbsTL9jP7Ym6QqBjmV9FpJ8dhVsK5WUkeyvn1KX0Xu54-6-nzv4FsUXgpeE4Pr7bdOsd7slxZQvGa8plvxDcUWJrEsmmPz4rv5cLGLc4xxVbonVVXFqnvVkoWz8FFPQboIWPR6SG91fnZyfUOcD2gxwcsYNLp3Rz-D_uHiZbIIfUXoGtPVWD2g9QejPqPHjeJxcchDRU3RTn8e9S-Wdjhn9C_oA8SK_KT51eoiweMvXxdNm_bv5UW4f7x-a221paVWnkteYA5eGicqsrDDCgpBYVryzAqwmUkvGWmhbwB222GDOmamJZZoA0VCz6-Jh5rZe79UhuFGHs_LaqdeGD73SITk7gCIMJICohMmYmrQVxZWkHRecG1MJnlnfZtYh-JcjxKT2_him_L5ihK5yUI7zFpu3bPAxBuj-XyVYXRxTs2Pq4ph6cyyrvs4qBwDvFCvOOWHsHyNFky0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777240</pqid></control><display><type>article</type><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><source>IEEE Xplore Open Access Journals</source><creator>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</creator><creatorcontrib>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</creatorcontrib><description>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492064</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chance-constrained optimization ; Computing time ; Constraints ; Correlation ; Costs ; Electric potential ; Electric vehicles ; Energy sources ; Errors ; Flexibility ; flexibility provision ; Flexible printed circuits ; logit-based regression ; Mathematical models ; Optimization ; Photovoltaic systems ; Power management ; Real-time systems ; rolling horizon ; second-order cone programming ; Stakeholders ; Statistical analysis ; Uncertainty ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2024, Vol.12, p.164606-164620</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</cites><orcidid>0009-0001-8178-6927 ; 0000-0002-7742-8967 ; 0000-0001-5073-4481 ; 0000-0003-2610-5161 ; 0000-0003-1124-2710 ; 0000-0002-0037-5449 ; 0000-0003-1593-1839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10744413$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Nguyen, An Thien Huu</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Huy, Truong Hoang Bao</creatorcontrib><creatorcontrib>Tran, Trung Thai</creatorcontrib><creatorcontrib>Nguyen, Hung Dinh</creatorcontrib><creatorcontrib>Slootweg, J. G.</creatorcontrib><creatorcontrib>Nguyen, Phuong Hong</creatorcontrib><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><title>IEEE access</title><addtitle>Access</addtitle><description>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</description><subject>Chance-constrained optimization</subject><subject>Computing time</subject><subject>Constraints</subject><subject>Correlation</subject><subject>Costs</subject><subject>Electric potential</subject><subject>Electric vehicles</subject><subject>Energy sources</subject><subject>Errors</subject><subject>Flexibility</subject><subject>flexibility provision</subject><subject>Flexible printed circuits</subject><subject>logit-based regression</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Photovoltaic systems</subject><subject>Power management</subject><subject>Real-time systems</subject><subject>rolling horizon</subject><subject>second-order cone programming</subject><subject>Stakeholders</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9r2zAQx83YYKXNX7A9CPbsTL9jP7Ym6QqBjmV9FpJ8dhVsK5WUkeyvn1KX0Xu54-6-nzv4FsUXgpeE4Pr7bdOsd7slxZQvGa8plvxDcUWJrEsmmPz4rv5cLGLc4xxVbonVVXFqnvVkoWz8FFPQboIWPR6SG91fnZyfUOcD2gxwcsYNLp3Rz-D_uHiZbIIfUXoGtPVWD2g9QejPqPHjeJxcchDRU3RTn8e9S-Wdjhn9C_oA8SK_KT51eoiweMvXxdNm_bv5UW4f7x-a221paVWnkteYA5eGicqsrDDCgpBYVryzAqwmUkvGWmhbwB222GDOmamJZZoA0VCz6-Jh5rZe79UhuFGHs_LaqdeGD73SITk7gCIMJICohMmYmrQVxZWkHRecG1MJnlnfZtYh-JcjxKT2_him_L5ihK5yUI7zFpu3bPAxBuj-XyVYXRxTs2Pq4ph6cyyrvs4qBwDvFCvOOWHsHyNFky0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nguyen, An Thien Huu</creator><creator>Singh, Anshuman</creator><creator>Huy, Truong Hoang Bao</creator><creator>Tran, Trung Thai</creator><creator>Nguyen, Hung Dinh</creator><creator>Slootweg, J. G.</creator><creator>Nguyen, Phuong Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-8178-6927</orcidid><orcidid>https://orcid.org/0000-0002-7742-8967</orcidid><orcidid>https://orcid.org/0000-0001-5073-4481</orcidid><orcidid>https://orcid.org/0000-0003-2610-5161</orcidid><orcidid>https://orcid.org/0000-0003-1124-2710</orcidid><orcidid>https://orcid.org/0000-0002-0037-5449</orcidid><orcidid>https://orcid.org/0000-0003-1593-1839</orcidid></search><sort><creationdate>2024</creationdate><title>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</title><author>Nguyen, An Thien Huu ; Singh, Anshuman ; Huy, Truong Hoang Bao ; Tran, Trung Thai ; Nguyen, Hung Dinh ; Slootweg, J. G. ; Nguyen, Phuong Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chance-constrained optimization</topic><topic>Computing time</topic><topic>Constraints</topic><topic>Correlation</topic><topic>Costs</topic><topic>Electric potential</topic><topic>Electric vehicles</topic><topic>Energy sources</topic><topic>Errors</topic><topic>Flexibility</topic><topic>flexibility provision</topic><topic>Flexible printed circuits</topic><topic>logit-based regression</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Photovoltaic systems</topic><topic>Power management</topic><topic>Real-time systems</topic><topic>rolling horizon</topic><topic>second-order cone programming</topic><topic>Stakeholders</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, An Thien Huu</creatorcontrib><creatorcontrib>Singh, Anshuman</creatorcontrib><creatorcontrib>Huy, Truong Hoang Bao</creatorcontrib><creatorcontrib>Tran, Trung Thai</creatorcontrib><creatorcontrib>Nguyen, Hung Dinh</creatorcontrib><creatorcontrib>Slootweg, J. G.</creatorcontrib><creatorcontrib>Nguyen, Phuong Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, An Thien Huu</au><au>Singh, Anshuman</au><au>Huy, Truong Hoang Bao</au><au>Tran, Trung Thai</au><au>Nguyen, Hung Dinh</au><au>Slootweg, J. G.</au><au>Nguyen, Phuong Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>164606</spage><epage>164620</epage><pages>164606-164620</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Local energy communities (LECs) represent a paradigm shift toward decentralized power management, facilitating self-consumption and efficient resource sharing. In addition, battery energy storage systems can empower LECs for flexibility provision (FP). However, the FP performance of LECs relies on the prediction capability, which unfortunately suffers from the uncertain nature of distributed energy resources, and electric vehicle's charging demand. While (profile-based) stochastic optimization (SO) can partly handle forecast errors, integrating it with the network-aware model is computationally demanding in a rolling horizon optimization framework. To overcome this computational burden, this paper proposes a novel method based on chance-constrained optimization (CCO) in convex form by leveraging logit-based regression. By deriving a closed-form expression for probabilistic constraints, this approach correlates forecast errors with network issues, such as congestion and voltage violations. Numerical simulations are conducted on the modified IEEE 33-bus network connected to two LECs in the Bunnik campus, the Netherlands to demonstrate the method's effectiveness. The proposed CCO method outperforms profile-based SO and network-aware SO by factors of 8 and 165, respectively, in terms of reducing computational time. Additionally, it limits voltage violation risks to below 5% compared to 20% in profile-based SO along with a 2% reduction in operations cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492064</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0001-8178-6927</orcidid><orcidid>https://orcid.org/0000-0002-7742-8967</orcidid><orcidid>https://orcid.org/0000-0001-5073-4481</orcidid><orcidid>https://orcid.org/0000-0003-2610-5161</orcidid><orcidid>https://orcid.org/0000-0003-1124-2710</orcidid><orcidid>https://orcid.org/0000-0002-0037-5449</orcidid><orcidid>https://orcid.org/0000-0003-1593-1839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.164606-164620 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3127777240 |
source | IEEE Xplore Open Access Journals |
subjects | Chance-constrained optimization Computing time Constraints Correlation Costs Electric potential Electric vehicles Energy sources Errors Flexibility flexibility provision Flexible printed circuits logit-based regression Mathematical models Optimization Photovoltaic systems Power management Real-time systems rolling horizon second-order cone programming Stakeholders Statistical analysis Uncertainty Voltage Voltage control |
title | Chance-Constrained Optimization for Flexibility Provision From the Local Energy Communities Using Logit-Based Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chance-Constrained%20Optimization%20for%20Flexibility%20Provision%20From%20the%20Local%20Energy%20Communities%20Using%20Logit-Based%20Regression&rft.jtitle=IEEE%20access&rft.au=Nguyen,%20An%20Thien%20Huu&rft.date=2024&rft.volume=12&rft.spage=164606&rft.epage=164620&rft.pages=164606-164620&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492064&rft_dat=%3Cproquest_cross%3E3127777240%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-4904e46b358b7c5b5ce560684fc5eca16a633dedde0f0c0b0443b91c3a1e1ae93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127777240&rft_id=info:pmid/&rft_ieee_id=10744413&rfr_iscdi=true |