Loading…
Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction
Alarm flood management is essential for industrial process plant safety and efficiency. Online "alarm flood classification" (AFC) assigns an observed sequence of alarms to one (of many) alarm flood classes known from the past. Nevertheless, accurately differentiating between alarm flood cl...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.165626-165652 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 165652 |
container_issue | |
container_start_page | 165626 |
container_title | IEEE access |
container_volume | 12 |
creator | Manca, Gianluca Kunze, Franz C. Fay, Alexander |
description | Alarm flood management is essential for industrial process plant safety and efficiency. Online "alarm flood classification" (AFC) assigns an observed sequence of alarms to one (of many) alarm flood classes known from the past. Nevertheless, accurately differentiating between alarm flood classes as they evolve over time remains a challenge due to classification uncertainty. Furthermore, AFC usually assigns to just one alarm flood class, preventing the operator from recognizing that multiple classes should be considered given the limited information at hand. This paper proposes a novel approach by integrating "conformal prediction" with "early time series classification" to address these challenges, offering a probabilistic understanding of alarm flood classes to be considered, and enhancing decision-support for operators. Using a method-agnostic framework, our method can be used with existing AFC models, making them adaptable to evolving alarm dynamics. We apply our approach to five AFC methods from literature using a novel and openly accessible synthetic alarm dataset we designed. Our evaluation shows how our method can improve coverage of the existing models, particularly in the early stages of alarm floods, ensuring with high confidence that the true class is captured while preserving a reasonably small set of possible alarm flood classes. |
doi_str_mv | 10.1109/ACCESS.2024.3492348 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3127777264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745491</ieee_id><doaj_id>oai_doaj_org_article_0ddec154ade64ea6b34523f77a990cb5</doaj_id><sourcerecordid>3127777264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-924fb2913daf531eadd15423b192c18e7fd95cd4f391c3cb038f7b1819425f053</originalsourceid><addsrcrecordid>eNpNUU1rwkAQDaWFSusvaA-BnmP3M8keQ9BWECxYe102-yErcddu4sF_342R4lxmmHnvzQwvSV4gmEEI2HtV1_PNZoYAIjNMGMKkvEsmCOYswxTn9zf1YzLtuj2IUcYWLSbJT6VU0F1n3S7dOqlDL6zrz6l16dq11um0akU4pIvWe5XWrYhQY6XorXfp9kKrvTM-HESbfgWtrBxGz8mDEW2np9f8lGwX8-_6M1utP5Z1tcokKlmfMURMgxjEShiKoRZKQUoQbiBDEpa6MIpRqYjBDEosG4BLUzSwhIwgagDFT8ly1FVe7Pkx2IMIZ-6F5ZeGDzsuQm9lqzlQSsuoLpTOiRZ5gwlF2BSFYAzIZtB6G7WOwf-edNfzvT8FF8_nGKIiBspJROERJYPvuqDN_1YI-OAHH_3ggx_86kdkvY4sq7W-YRSEkvj-H-mQhqg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777264</pqid></control><display><type>article</type><title>Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction</title><source>IEEE Xplore Open Access Journals</source><creator>Manca, Gianluca ; Kunze, Franz C. ; Fay, Alexander</creator><creatorcontrib>Manca, Gianluca ; Kunze, Franz C. ; Fay, Alexander</creatorcontrib><description>Alarm flood management is essential for industrial process plant safety and efficiency. Online "alarm flood classification" (AFC) assigns an observed sequence of alarms to one (of many) alarm flood classes known from the past. Nevertheless, accurately differentiating between alarm flood classes as they evolve over time remains a challenge due to classification uncertainty. Furthermore, AFC usually assigns to just one alarm flood class, preventing the operator from recognizing that multiple classes should be considered given the limited information at hand. This paper proposes a novel approach by integrating "conformal prediction" with "early time series classification" to address these challenges, offering a probabilistic understanding of alarm flood classes to be considered, and enhancing decision-support for operators. Using a method-agnostic framework, our method can be used with existing AFC models, making them adaptable to evolving alarm dynamics. We apply our approach to five AFC methods from literature using a novel and openly accessible synthetic alarm dataset we designed. Our evaluation shows how our method can improve coverage of the existing models, particularly in the early stages of alarm floods, ensuring with high confidence that the true class is captured while preserving a reasonably small set of possible alarm flood classes.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3492348</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Abnormal situations ; alarm management ; Alarm systems ; Classification ; conformal prediction ; Data mining ; early time series classification ; Flood management ; Flood predictions ; Floods ; industrial alarm floods ; Industrial plants ; industrial process diagnosis ; Neural networks ; Predictive models ; Process control ; Safety ; Safety management ; Time series analysis ; Training ; Uncertainty</subject><ispartof>IEEE access, 2024, Vol.12, p.165626-165652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1922-654X ; 0000-0003-4344-224X ; 0000-0001-5951-8590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745491$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Kunze, Franz C.</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><title>Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Alarm flood management is essential for industrial process plant safety and efficiency. Online "alarm flood classification" (AFC) assigns an observed sequence of alarms to one (of many) alarm flood classes known from the past. Nevertheless, accurately differentiating between alarm flood classes as they evolve over time remains a challenge due to classification uncertainty. Furthermore, AFC usually assigns to just one alarm flood class, preventing the operator from recognizing that multiple classes should be considered given the limited information at hand. This paper proposes a novel approach by integrating "conformal prediction" with "early time series classification" to address these challenges, offering a probabilistic understanding of alarm flood classes to be considered, and enhancing decision-support for operators. Using a method-agnostic framework, our method can be used with existing AFC models, making them adaptable to evolving alarm dynamics. We apply our approach to five AFC methods from literature using a novel and openly accessible synthetic alarm dataset we designed. Our evaluation shows how our method can improve coverage of the existing models, particularly in the early stages of alarm floods, ensuring with high confidence that the true class is captured while preserving a reasonably small set of possible alarm flood classes.</description><subject>Abnormal situations</subject><subject>alarm management</subject><subject>Alarm systems</subject><subject>Classification</subject><subject>conformal prediction</subject><subject>Data mining</subject><subject>early time series classification</subject><subject>Flood management</subject><subject>Flood predictions</subject><subject>Floods</subject><subject>industrial alarm floods</subject><subject>Industrial plants</subject><subject>industrial process diagnosis</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Safety</subject><subject>Safety management</subject><subject>Time series analysis</subject><subject>Training</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwkAQDaWFSusvaA-BnmP3M8keQ9BWECxYe102-yErcddu4sF_342R4lxmmHnvzQwvSV4gmEEI2HtV1_PNZoYAIjNMGMKkvEsmCOYswxTn9zf1YzLtuj2IUcYWLSbJT6VU0F1n3S7dOqlDL6zrz6l16dq11um0akU4pIvWe5XWrYhQY6XorXfp9kKrvTM-HESbfgWtrBxGz8mDEW2np9f8lGwX8-_6M1utP5Z1tcokKlmfMURMgxjEShiKoRZKQUoQbiBDEpa6MIpRqYjBDEosG4BLUzSwhIwgagDFT8ly1FVe7Pkx2IMIZ-6F5ZeGDzsuQm9lqzlQSsuoLpTOiRZ5gwlF2BSFYAzIZtB6G7WOwf-edNfzvT8FF8_nGKIiBspJROERJYPvuqDN_1YI-OAHH_3ggx_86kdkvY4sq7W-YRSEkvj-H-mQhqg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Manca, Gianluca</creator><creator>Kunze, Franz C.</creator><creator>Fay, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0003-4344-224X</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid></search><sort><creationdate>2024</creationdate><title>Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction</title><author>Manca, Gianluca ; Kunze, Franz C. ; Fay, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-924fb2913daf531eadd15423b192c18e7fd95cd4f391c3cb038f7b1819425f053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormal situations</topic><topic>alarm management</topic><topic>Alarm systems</topic><topic>Classification</topic><topic>conformal prediction</topic><topic>Data mining</topic><topic>early time series classification</topic><topic>Flood management</topic><topic>Flood predictions</topic><topic>Floods</topic><topic>industrial alarm floods</topic><topic>Industrial plants</topic><topic>industrial process diagnosis</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Safety</topic><topic>Safety management</topic><topic>Time series analysis</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manca, Gianluca</creatorcontrib><creatorcontrib>Kunze, Franz C.</creatorcontrib><creatorcontrib>Fay, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manca, Gianluca</au><au>Kunze, Franz C.</au><au>Fay, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>165626</spage><epage>165652</epage><pages>165626-165652</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Alarm flood management is essential for industrial process plant safety and efficiency. Online "alarm flood classification" (AFC) assigns an observed sequence of alarms to one (of many) alarm flood classes known from the past. Nevertheless, accurately differentiating between alarm flood classes as they evolve over time remains a challenge due to classification uncertainty. Furthermore, AFC usually assigns to just one alarm flood class, preventing the operator from recognizing that multiple classes should be considered given the limited information at hand. This paper proposes a novel approach by integrating "conformal prediction" with "early time series classification" to address these challenges, offering a probabilistic understanding of alarm flood classes to be considered, and enhancing decision-support for operators. Using a method-agnostic framework, our method can be used with existing AFC models, making them adaptable to evolving alarm dynamics. We apply our approach to five AFC methods from literature using a novel and openly accessible synthetic alarm dataset we designed. Our evaluation shows how our method can improve coverage of the existing models, particularly in the early stages of alarm floods, ensuring with high confidence that the true class is captured while preserving a reasonably small set of possible alarm flood classes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3492348</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-1922-654X</orcidid><orcidid>https://orcid.org/0000-0003-4344-224X</orcidid><orcidid>https://orcid.org/0000-0001-5951-8590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.165626-165652 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3127777264 |
source | IEEE Xplore Open Access Journals |
subjects | Abnormal situations alarm management Alarm systems Classification conformal prediction Data mining early time series classification Flood management Flood predictions Floods industrial alarm floods Industrial plants industrial process diagnosis Neural networks Predictive models Process control Safety Safety management Time series analysis Training Uncertainty |
title | Addressing Uncertainty in Online Alarm Flood Classification Using Conformal Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addressing%20Uncertainty%20in%20Online%20Alarm%20Flood%20Classification%20Using%20Conformal%20Prediction&rft.jtitle=IEEE%20access&rft.au=Manca,%20Gianluca&rft.date=2024&rft.volume=12&rft.spage=165626&rft.epage=165652&rft.pages=165626-165652&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3492348&rft_dat=%3Cproquest_ieee_%3E3127777264%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-924fb2913daf531eadd15423b192c18e7fd95cd4f391c3cb038f7b1819425f053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127777264&rft_id=info:pmid/&rft_ieee_id=10745491&rfr_iscdi=true |