Loading…

TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction

The Internet of Things (IoT) paradigm encompasses computing and networking capabilities within electronic objects, acting as a fundamental development framework with vast potential for improving lives, enhancing industrial processes, and enabling real-time decision-making. However, as the number of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2024-11, Vol.24 (22), p.38165-38173
Main Authors: Andrade, Pedro, Silva, Marianne, Medeiros, Morsinaldo, Costa, Daniel G., Silva, Ivanovitch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c176t-118455eebff057e387960986fbc3adb319339ad925473494ecb96c48e0f265903
container_end_page 38173
container_issue 22
container_start_page 38165
container_title IEEE sensors journal
container_volume 24
creator Andrade, Pedro
Silva, Marianne
Medeiros, Morsinaldo
Costa, Daniel G.
Silva, Ivanovitch
description The Internet of Things (IoT) paradigm encompasses computing and networking capabilities within electronic objects, acting as a fundamental development framework with vast potential for improving lives, enhancing industrial processes, and enabling real-time decision-making. However, as the number of connected objects increases, the infrastructure for processing and handling large volumes of data is highly impacted. In response, edge computing has been exploited as a way to bring the processing burden closer to the data sources, shifting the conventional data processing flow. As a result, a series of innovative machine learning applications has been developed for resource-constrained devices, such as microcontrollers, enabling efficient data processing on the edge and inaugurating the era of tiny machine learning (TinyML). Nevertheless, although the benefits have proven promising in different scenarios, particularly when the flexibility of embedded models meets the requisites of unsupervised learning approaches, TinyML-based applications may need to perform real-time identification of data outliers since they could waste resources and impair the expected model accuracy. In this context, this article proposes an innovative TinyML outlier detection and correction algorithm based on incremental learning. This algorithm was implemented in an on-board diagnostics (OBD-II) scanner as a proof of concept, where a microcontroller acquires real-time vehicle data to identify data outliers and perform necessary corrections, benefiting practical applications in multiple scenarios.
doi_str_mv 10.1109/JSEN.2024.3458917
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127777925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10682534</ieee_id><sourcerecordid>3127777925</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-118455eebff057e387960986fbc3adb319339ad925473494ecb96c48e0f265903</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOsWM7trlF_YGiQCXaStwsx91AqtYpTnro25MoPbCX3ZVmZlcfQveUjCgl-ultOf0YxSTmI8aF0lReoAEVQkVUcnXZzYxEnMmva3RT11tCqJZCDtB6NZ2k0We2fMYpXpX-9J7huXcB9uAbu8MZ2OBL_43TwyFU1v3gogp4cWx2JQQ8gQZcU1YeW7_B4yqEfr1FV4Xd1XB37kO0nk1X49coW7zMx2kWOSqTJqJUcSEA8qIgQgJTUidEq6TIHbObnFHNmLYbHQsuGdccXK4TxxWQIk6EJmyIHvvc9rffI9SN2VbH4NuThtFYttV6WxXtVS5UdR2gMIdQ7m04GUpMR8909ExHz5zptZ6H3lMCwD99otpAzv4AC5dpgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777925</pqid></control><display><type>article</type><title>TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction</title><source>IEEE Xplore (Online service)</source><creator>Andrade, Pedro ; Silva, Marianne ; Medeiros, Morsinaldo ; Costa, Daniel G. ; Silva, Ivanovitch</creator><creatorcontrib>Andrade, Pedro ; Silva, Marianne ; Medeiros, Morsinaldo ; Costa, Daniel G. ; Silva, Ivanovitch</creatorcontrib><description>The Internet of Things (IoT) paradigm encompasses computing and networking capabilities within electronic objects, acting as a fundamental development framework with vast potential for improving lives, enhancing industrial processes, and enabling real-time decision-making. However, as the number of connected objects increases, the infrastructure for processing and handling large volumes of data is highly impacted. In response, edge computing has been exploited as a way to bring the processing burden closer to the data sources, shifting the conventional data processing flow. As a result, a series of innovative machine learning applications has been developed for resource-constrained devices, such as microcontrollers, enabling efficient data processing on the edge and inaugurating the era of tiny machine learning (TinyML). Nevertheless, although the benefits have proven promising in different scenarios, particularly when the flexibility of embedded models meets the requisites of unsupervised learning approaches, TinyML-based applications may need to perform real-time identification of data outliers since they could waste resources and impair the expected model accuracy. In this context, this article proposes an innovative TinyML outlier detection and correction algorithm based on incremental learning. This algorithm was implemented in an on-board diagnostics (OBD-II) scanner as a proof of concept, where a microcontroller acquires real-time vehicle data to identify data outliers and perform necessary corrections, benefiting practical applications in multiple scenarios.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3458917</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Anomaly detection ; Data acquisition ; Data analysis ; Data models ; Data processing ; Edge computing ; Embedded systems ; Internet of Things ; Internet of Things (IoT) ; Machine learning ; Microcontrollers ; on-board diagnostics (OBD-II) ; Outliers (statistics) ; Real time ; Real-time systems ; Sensors ; smart vehicles ; Streams ; Tiny machine learning ; Unsupervised learning</subject><ispartof>IEEE sensors journal, 2024-11, Vol.24 (22), p.38165-38173</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-118455eebff057e387960986fbc3adb319339ad925473494ecb96c48e0f265903</cites><orcidid>0000-0003-3988-8476 ; 0000-0002-7729-9085 ; 0000-0002-8277-7571 ; 0000-0002-0116-6489 ; 0000-0001-7624-5301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10682534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Andrade, Pedro</creatorcontrib><creatorcontrib>Silva, Marianne</creatorcontrib><creatorcontrib>Medeiros, Morsinaldo</creatorcontrib><creatorcontrib>Costa, Daniel G.</creatorcontrib><creatorcontrib>Silva, Ivanovitch</creatorcontrib><title>TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The Internet of Things (IoT) paradigm encompasses computing and networking capabilities within electronic objects, acting as a fundamental development framework with vast potential for improving lives, enhancing industrial processes, and enabling real-time decision-making. However, as the number of connected objects increases, the infrastructure for processing and handling large volumes of data is highly impacted. In response, edge computing has been exploited as a way to bring the processing burden closer to the data sources, shifting the conventional data processing flow. As a result, a series of innovative machine learning applications has been developed for resource-constrained devices, such as microcontrollers, enabling efficient data processing on the edge and inaugurating the era of tiny machine learning (TinyML). Nevertheless, although the benefits have proven promising in different scenarios, particularly when the flexibility of embedded models meets the requisites of unsupervised learning approaches, TinyML-based applications may need to perform real-time identification of data outliers since they could waste resources and impair the expected model accuracy. In this context, this article proposes an innovative TinyML outlier detection and correction algorithm based on incremental learning. This algorithm was implemented in an on-board diagnostics (OBD-II) scanner as a proof of concept, where a microcontroller acquires real-time vehicle data to identify data outliers and perform necessary corrections, benefiting practical applications in multiple scenarios.</description><subject>Algorithms</subject><subject>Anomaly detection</subject><subject>Data acquisition</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data processing</subject><subject>Edge computing</subject><subject>Embedded systems</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Machine learning</subject><subject>Microcontrollers</subject><subject>on-board diagnostics (OBD-II)</subject><subject>Outliers (statistics)</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Sensors</subject><subject>smart vehicles</subject><subject>Streams</subject><subject>Tiny machine learning</subject><subject>Unsupervised learning</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwAEgcLHFOsWM7trlF_YGiQCXaStwsx91AqtYpTnro25MoPbCX3ZVmZlcfQveUjCgl-ultOf0YxSTmI8aF0lReoAEVQkVUcnXZzYxEnMmva3RT11tCqJZCDtB6NZ2k0We2fMYpXpX-9J7huXcB9uAbu8MZ2OBL_43TwyFU1v3gogp4cWx2JQQ8gQZcU1YeW7_B4yqEfr1FV4Xd1XB37kO0nk1X49coW7zMx2kWOSqTJqJUcSEA8qIgQgJTUidEq6TIHbObnFHNmLYbHQsuGdccXK4TxxWQIk6EJmyIHvvc9rffI9SN2VbH4NuThtFYttV6WxXtVS5UdR2gMIdQ7m04GUpMR8909ExHz5zptZ6H3lMCwD99otpAzv4AC5dpgw</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Andrade, Pedro</creator><creator>Silva, Marianne</creator><creator>Medeiros, Morsinaldo</creator><creator>Costa, Daniel G.</creator><creator>Silva, Ivanovitch</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3988-8476</orcidid><orcidid>https://orcid.org/0000-0002-7729-9085</orcidid><orcidid>https://orcid.org/0000-0002-8277-7571</orcidid><orcidid>https://orcid.org/0000-0002-0116-6489</orcidid><orcidid>https://orcid.org/0000-0001-7624-5301</orcidid></search><sort><creationdate>20241115</creationdate><title>TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction</title><author>Andrade, Pedro ; Silva, Marianne ; Medeiros, Morsinaldo ; Costa, Daniel G. ; Silva, Ivanovitch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-118455eebff057e387960986fbc3adb319339ad925473494ecb96c48e0f265903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomaly detection</topic><topic>Data acquisition</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data processing</topic><topic>Edge computing</topic><topic>Embedded systems</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Machine learning</topic><topic>Microcontrollers</topic><topic>on-board diagnostics (OBD-II)</topic><topic>Outliers (statistics)</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Sensors</topic><topic>smart vehicles</topic><topic>Streams</topic><topic>Tiny machine learning</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrade, Pedro</creatorcontrib><creatorcontrib>Silva, Marianne</creatorcontrib><creatorcontrib>Medeiros, Morsinaldo</creatorcontrib><creatorcontrib>Costa, Daniel G.</creatorcontrib><creatorcontrib>Silva, Ivanovitch</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade, Pedro</au><au>Silva, Marianne</au><au>Medeiros, Morsinaldo</au><au>Costa, Daniel G.</au><au>Silva, Ivanovitch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>24</volume><issue>22</issue><spage>38165</spage><epage>38173</epage><pages>38165-38173</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The Internet of Things (IoT) paradigm encompasses computing and networking capabilities within electronic objects, acting as a fundamental development framework with vast potential for improving lives, enhancing industrial processes, and enabling real-time decision-making. However, as the number of connected objects increases, the infrastructure for processing and handling large volumes of data is highly impacted. In response, edge computing has been exploited as a way to bring the processing burden closer to the data sources, shifting the conventional data processing flow. As a result, a series of innovative machine learning applications has been developed for resource-constrained devices, such as microcontrollers, enabling efficient data processing on the edge and inaugurating the era of tiny machine learning (TinyML). Nevertheless, although the benefits have proven promising in different scenarios, particularly when the flexibility of embedded models meets the requisites of unsupervised learning approaches, TinyML-based applications may need to perform real-time identification of data outliers since they could waste resources and impair the expected model accuracy. In this context, this article proposes an innovative TinyML outlier detection and correction algorithm based on incremental learning. This algorithm was implemented in an on-board diagnostics (OBD-II) scanner as a proof of concept, where a microcontroller acquires real-time vehicle data to identify data outliers and perform necessary corrections, benefiting practical applications in multiple scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3458917</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3988-8476</orcidid><orcidid>https://orcid.org/0000-0002-7729-9085</orcidid><orcidid>https://orcid.org/0000-0002-8277-7571</orcidid><orcidid>https://orcid.org/0000-0002-0116-6489</orcidid><orcidid>https://orcid.org/0000-0001-7624-5301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-11, Vol.24 (22), p.38165-38173
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3127777925
source IEEE Xplore (Online service)
subjects Algorithms
Anomaly detection
Data acquisition
Data analysis
Data models
Data processing
Edge computing
Embedded systems
Internet of Things
Internet of Things (IoT)
Machine learning
Microcontrollers
on-board diagnostics (OBD-II)
Outliers (statistics)
Real time
Real-time systems
Sensors
smart vehicles
Streams
Tiny machine learning
Unsupervised learning
title TEDA-RLS: A TinyML Incremental Learning Approach for Outlier Detection and Correction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TEDA-RLS:%20A%20TinyML%20Incremental%20Learning%20Approach%20for%20Outlier%20Detection%20and%20Correction&rft.jtitle=IEEE%20sensors%20journal&rft.au=Andrade,%20Pedro&rft.date=2024-11-15&rft.volume=24&rft.issue=22&rft.spage=38165&rft.epage=38173&rft.pages=38165-38173&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3458917&rft_dat=%3Cproquest_cross%3E3127777925%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c176t-118455eebff057e387960986fbc3adb319339ad925473494ecb96c48e0f265903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3127777925&rft_id=info:pmid/&rft_ieee_id=10682534&rfr_iscdi=true