Loading…

Language Models as Causal Effect Generators

We present a framework for large language model (LLM) based data generation with controllable causal structure. In particular, we define a procedure for turning any language model and any directed acyclic graph (DAG) into a sequence-driven structural causal model (SD-SCM). Broadly speaking, an SD-SC...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-11
Main Authors: Bynum, Lucius E J, Cho, Kyunghyun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a framework for large language model (LLM) based data generation with controllable causal structure. In particular, we define a procedure for turning any language model and any directed acyclic graph (DAG) into a sequence-driven structural causal model (SD-SCM). Broadly speaking, an SD-SCM is a causal model with user-defined structure and LLM-defined structural equations. We characterize how an SD-SCM allows sampling from observational, interventional, and counterfactual distributions according to the desired causal structure. We then leverage this procedure to propose a new type of benchmark for causal inference methods, generating individual-level counterfactual data without needing to manually specify functional relationships between variables. We create an example benchmark consisting of thousands of datasets, and test a suite of popular estimation methods on these datasets for average, conditional average, and individual treatment effect estimation, both with and without hidden confounding. Apart from generating data, the same procedure also allows us to test for the presence of a causal effect that might be encoded in an LLM. This procedure can underpin auditing LLMs for misinformation, discrimination, or otherwise undesirable behavior. We believe SD-SCMs can serve as a useful tool in any application that would benefit from sequential data with controllable causal structure.
ISSN:2331-8422