Loading…
Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities
The introduction of liquid crystals into microcavities has garnered considerable attention for their exceptional tunability and high sensitivity to external perturbation factors within their distinct phase states. Here, a novel light source with both wavelength tunability and an exceptionally narrow...
Saved in:
Published in: | Advanced optical materials 2024-11, Vol.12 (32), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2022-a3043aaab9f04b471ebed107debdb094ab39241c60b5dd5c947caccbe614a7953 |
container_end_page | n/a |
container_issue | 32 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Tang, Renjie Wang, Yiting Jian, Jialing Ju, Zezhao Si, Yalan Wu, Jianghong Ye, Yuting Shi, Yilin Bao, Kangjian Wu, Yingchun Tang, Yiheng Sun, Chunlei Gao, Dawei Lin, Hongtao Li, Lan |
description | The introduction of liquid crystals into microcavities has garnered considerable attention for their exceptional tunability and high sensitivity to external perturbation factors within their distinct phase states. Here, a novel light source with both wavelength tunability and an exceptionally narrow linewidth is presented. This innovation is realized by strategically manipulating LC molecules, transitioning them from a well‐aligned state to a disordered state with increasing temperature. The microcavity is tailored to support bound states in the continuum, a cutting‐edge concept in photonic research that allows for light localization with minimal loss. In the pursuit of potential biocompatibility and to reduce cytotoxicity, indium phosphide colloid quantum dots are opted to serve as the emissive carriers within the system. An ultra‐narrow linewidth light emission of 0.039 nm is observed, corresponding to a quality factor reaching 16668, along with a tunable range of 1.21 nm and a temperature sensitivity of 33.52 pm K−1. The invention's compact size and tunable character make it an ideal candidate for a variety of potential applications, such as eco‐friendly sensors with minimal ecological impact, optical modulators with precise control over light, and adaptable photonic devices that can be integrated with a diverse array of materials and configurations.
A tunable ultra‐narrow linewidth light emission from a liquid‐crystal‐based photonic crystal cavity is experimentally demonstrated. The article thoroughly studies the design of cavities, ultra‐narrow linewidth light sources based on InP quantum dot, and liquid crystal‐assisted wavelength tuning. The devices exhibit a quality factor of 16 668, a sensitivity of 33.52 pm K−1, and a total tuning range of 25.7 nm. |
doi_str_mv | 10.1002/adom.202401592 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128088254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128088254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2022-a3043aaab9f04b471ebed107debdb094ab39241c60b5dd5c947caccbe614a7953</originalsourceid><addsrcrecordid>eNqFUE1PAjEQ3RhNJMjV8yaeF9tul6VHXL9IQA7AeTPdFihZWmi7Ek76E_yN_hJLMOrNy8ybyXszeS-KrjHqYoTILQiz6RJEKMIZI2dRi2CWJRjl-PwPvow6zq0RQmFIGc1b0dus0cBrGc9rb-Hz_eMFrDX7eKS03CvhVwEtVz6emsZWMp6trGmWx-WuUSIu7MF5qINs4JxyXop4rLQK851ptAh96sFLF8BQh1IY7ZVumk1cwKvySrqr6GIBtZOd796O5o8Ps-I5GU2ehsVglFTBFEkgRTQFAM4WiHKaY8mlCCaE5IIjRoGnjFBc9RDPhMiq4K2CquKyhynkLEvb0c3p7taaXSOdL9fBkQ4vyxSTPur3SUYDq3tiVdY4Z-Wi3Fq1AXsoMSqPOZfHnMufnIOAnQR7VcvDP-xycD8Z_2q_AJsFidk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128088254</pqid></control><display><type>article</type><title>Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Tang, Renjie ; Wang, Yiting ; Jian, Jialing ; Ju, Zezhao ; Si, Yalan ; Wu, Jianghong ; Ye, Yuting ; Shi, Yilin ; Bao, Kangjian ; Wu, Yingchun ; Tang, Yiheng ; Sun, Chunlei ; Gao, Dawei ; Lin, Hongtao ; Li, Lan</creator><creatorcontrib>Tang, Renjie ; Wang, Yiting ; Jian, Jialing ; Ju, Zezhao ; Si, Yalan ; Wu, Jianghong ; Ye, Yuting ; Shi, Yilin ; Bao, Kangjian ; Wu, Yingchun ; Tang, Yiheng ; Sun, Chunlei ; Gao, Dawei ; Lin, Hongtao ; Li, Lan</creatorcontrib><description>The introduction of liquid crystals into microcavities has garnered considerable attention for their exceptional tunability and high sensitivity to external perturbation factors within their distinct phase states. Here, a novel light source with both wavelength tunability and an exceptionally narrow linewidth is presented. This innovation is realized by strategically manipulating LC molecules, transitioning them from a well‐aligned state to a disordered state with increasing temperature. The microcavity is tailored to support bound states in the continuum, a cutting‐edge concept in photonic research that allows for light localization with minimal loss. In the pursuit of potential biocompatibility and to reduce cytotoxicity, indium phosphide colloid quantum dots are opted to serve as the emissive carriers within the system. An ultra‐narrow linewidth light emission of 0.039 nm is observed, corresponding to a quality factor reaching 16668, along with a tunable range of 1.21 nm and a temperature sensitivity of 33.52 pm K−1. The invention's compact size and tunable character make it an ideal candidate for a variety of potential applications, such as eco‐friendly sensors with minimal ecological impact, optical modulators with precise control over light, and adaptable photonic devices that can be integrated with a diverse array of materials and configurations.
A tunable ultra‐narrow linewidth light emission from a liquid‐crystal‐based photonic crystal cavity is experimentally demonstrated. The article thoroughly studies the design of cavities, ultra‐narrow linewidth light sources based on InP quantum dot, and liquid crystal‐assisted wavelength tuning. The devices exhibit a quality factor of 16 668, a sensitivity of 33.52 pm K−1, and a total tuning range of 25.7 nm.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401592</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Indium phosphides ; InP quantum dot ; Inventions ; Light emission ; Light sources ; liquid crystal ; Liquid crystals ; Microcavities ; Photonic crystals ; Quantum dots ; Sensitivity ; Sensor arrays ; ultra‐narrow linewidth ; wavelength‐tunable</subject><ispartof>Advanced optical materials, 2024-11, Vol.12 (32), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2022-a3043aaab9f04b471ebed107debdb094ab39241c60b5dd5c947caccbe614a7953</cites><orcidid>0000-0002-9097-9157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tang, Renjie</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Jian, Jialing</creatorcontrib><creatorcontrib>Ju, Zezhao</creatorcontrib><creatorcontrib>Si, Yalan</creatorcontrib><creatorcontrib>Wu, Jianghong</creatorcontrib><creatorcontrib>Ye, Yuting</creatorcontrib><creatorcontrib>Shi, Yilin</creatorcontrib><creatorcontrib>Bao, Kangjian</creatorcontrib><creatorcontrib>Wu, Yingchun</creatorcontrib><creatorcontrib>Tang, Yiheng</creatorcontrib><creatorcontrib>Sun, Chunlei</creatorcontrib><creatorcontrib>Gao, Dawei</creatorcontrib><creatorcontrib>Lin, Hongtao</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><title>Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities</title><title>Advanced optical materials</title><description>The introduction of liquid crystals into microcavities has garnered considerable attention for their exceptional tunability and high sensitivity to external perturbation factors within their distinct phase states. Here, a novel light source with both wavelength tunability and an exceptionally narrow linewidth is presented. This innovation is realized by strategically manipulating LC molecules, transitioning them from a well‐aligned state to a disordered state with increasing temperature. The microcavity is tailored to support bound states in the continuum, a cutting‐edge concept in photonic research that allows for light localization with minimal loss. In the pursuit of potential biocompatibility and to reduce cytotoxicity, indium phosphide colloid quantum dots are opted to serve as the emissive carriers within the system. An ultra‐narrow linewidth light emission of 0.039 nm is observed, corresponding to a quality factor reaching 16668, along with a tunable range of 1.21 nm and a temperature sensitivity of 33.52 pm K−1. The invention's compact size and tunable character make it an ideal candidate for a variety of potential applications, such as eco‐friendly sensors with minimal ecological impact, optical modulators with precise control over light, and adaptable photonic devices that can be integrated with a diverse array of materials and configurations.
A tunable ultra‐narrow linewidth light emission from a liquid‐crystal‐based photonic crystal cavity is experimentally demonstrated. The article thoroughly studies the design of cavities, ultra‐narrow linewidth light sources based on InP quantum dot, and liquid crystal‐assisted wavelength tuning. The devices exhibit a quality factor of 16 668, a sensitivity of 33.52 pm K−1, and a total tuning range of 25.7 nm.</description><subject>Biocompatibility</subject><subject>Indium phosphides</subject><subject>InP quantum dot</subject><subject>Inventions</subject><subject>Light emission</subject><subject>Light sources</subject><subject>liquid crystal</subject><subject>Liquid crystals</subject><subject>Microcavities</subject><subject>Photonic crystals</subject><subject>Quantum dots</subject><subject>Sensitivity</subject><subject>Sensor arrays</subject><subject>ultra‐narrow linewidth</subject><subject>wavelength‐tunable</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAjEQ3RhNJMjV8yaeF9tul6VHXL9IQA7AeTPdFihZWmi7Ek76E_yN_hJLMOrNy8ybyXszeS-KrjHqYoTILQiz6RJEKMIZI2dRi2CWJRjl-PwPvow6zq0RQmFIGc1b0dus0cBrGc9rb-Hz_eMFrDX7eKS03CvhVwEtVz6emsZWMp6trGmWx-WuUSIu7MF5qINs4JxyXop4rLQK851ptAh96sFLF8BQh1IY7ZVumk1cwKvySrqr6GIBtZOd796O5o8Ps-I5GU2ehsVglFTBFEkgRTQFAM4WiHKaY8mlCCaE5IIjRoGnjFBc9RDPhMiq4K2CquKyhynkLEvb0c3p7taaXSOdL9fBkQ4vyxSTPur3SUYDq3tiVdY4Z-Wi3Fq1AXsoMSqPOZfHnMufnIOAnQR7VcvDP-xycD8Z_2q_AJsFidk</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Tang, Renjie</creator><creator>Wang, Yiting</creator><creator>Jian, Jialing</creator><creator>Ju, Zezhao</creator><creator>Si, Yalan</creator><creator>Wu, Jianghong</creator><creator>Ye, Yuting</creator><creator>Shi, Yilin</creator><creator>Bao, Kangjian</creator><creator>Wu, Yingchun</creator><creator>Tang, Yiheng</creator><creator>Sun, Chunlei</creator><creator>Gao, Dawei</creator><creator>Lin, Hongtao</creator><creator>Li, Lan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9097-9157</orcidid></search><sort><creationdate>20241101</creationdate><title>Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities</title><author>Tang, Renjie ; Wang, Yiting ; Jian, Jialing ; Ju, Zezhao ; Si, Yalan ; Wu, Jianghong ; Ye, Yuting ; Shi, Yilin ; Bao, Kangjian ; Wu, Yingchun ; Tang, Yiheng ; Sun, Chunlei ; Gao, Dawei ; Lin, Hongtao ; Li, Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2022-a3043aaab9f04b471ebed107debdb094ab39241c60b5dd5c947caccbe614a7953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biocompatibility</topic><topic>Indium phosphides</topic><topic>InP quantum dot</topic><topic>Inventions</topic><topic>Light emission</topic><topic>Light sources</topic><topic>liquid crystal</topic><topic>Liquid crystals</topic><topic>Microcavities</topic><topic>Photonic crystals</topic><topic>Quantum dots</topic><topic>Sensitivity</topic><topic>Sensor arrays</topic><topic>ultra‐narrow linewidth</topic><topic>wavelength‐tunable</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Renjie</creatorcontrib><creatorcontrib>Wang, Yiting</creatorcontrib><creatorcontrib>Jian, Jialing</creatorcontrib><creatorcontrib>Ju, Zezhao</creatorcontrib><creatorcontrib>Si, Yalan</creatorcontrib><creatorcontrib>Wu, Jianghong</creatorcontrib><creatorcontrib>Ye, Yuting</creatorcontrib><creatorcontrib>Shi, Yilin</creatorcontrib><creatorcontrib>Bao, Kangjian</creatorcontrib><creatorcontrib>Wu, Yingchun</creatorcontrib><creatorcontrib>Tang, Yiheng</creatorcontrib><creatorcontrib>Sun, Chunlei</creatorcontrib><creatorcontrib>Gao, Dawei</creatorcontrib><creatorcontrib>Lin, Hongtao</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Renjie</au><au>Wang, Yiting</au><au>Jian, Jialing</au><au>Ju, Zezhao</au><au>Si, Yalan</au><au>Wu, Jianghong</au><au>Ye, Yuting</au><au>Shi, Yilin</au><au>Bao, Kangjian</au><au>Wu, Yingchun</au><au>Tang, Yiheng</au><au>Sun, Chunlei</au><au>Gao, Dawei</au><au>Lin, Hongtao</au><au>Li, Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities</atitle><jtitle>Advanced optical materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>The introduction of liquid crystals into microcavities has garnered considerable attention for their exceptional tunability and high sensitivity to external perturbation factors within their distinct phase states. Here, a novel light source with both wavelength tunability and an exceptionally narrow linewidth is presented. This innovation is realized by strategically manipulating LC molecules, transitioning them from a well‐aligned state to a disordered state with increasing temperature. The microcavity is tailored to support bound states in the continuum, a cutting‐edge concept in photonic research that allows for light localization with minimal loss. In the pursuit of potential biocompatibility and to reduce cytotoxicity, indium phosphide colloid quantum dots are opted to serve as the emissive carriers within the system. An ultra‐narrow linewidth light emission of 0.039 nm is observed, corresponding to a quality factor reaching 16668, along with a tunable range of 1.21 nm and a temperature sensitivity of 33.52 pm K−1. The invention's compact size and tunable character make it an ideal candidate for a variety of potential applications, such as eco‐friendly sensors with minimal ecological impact, optical modulators with precise control over light, and adaptable photonic devices that can be integrated with a diverse array of materials and configurations.
A tunable ultra‐narrow linewidth light emission from a liquid‐crystal‐based photonic crystal cavity is experimentally demonstrated. The article thoroughly studies the design of cavities, ultra‐narrow linewidth light sources based on InP quantum dot, and liquid crystal‐assisted wavelength tuning. The devices exhibit a quality factor of 16 668, a sensitivity of 33.52 pm K−1, and a total tuning range of 25.7 nm.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401592</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9097-9157</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-11, Vol.12 (32), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3128088254 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biocompatibility Indium phosphides InP quantum dot Inventions Light emission Light sources liquid crystal Liquid crystals Microcavities Photonic crystals Quantum dots Sensitivity Sensor arrays ultra‐narrow linewidth wavelength‐tunable |
title | Tunable Ultra‐Narrow Linewidth Light Source Through Liquid Crystal‐Assisted Mini‐Bound‐States‐In‐Continuum Cavities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Ultra%E2%80%90Narrow%20Linewidth%20Light%20Source%20Through%20Liquid%20Crystal%E2%80%90Assisted%20Mini%E2%80%90Bound%E2%80%90States%E2%80%90In%E2%80%90Continuum%20Cavities&rft.jtitle=Advanced%20optical%20materials&rft.au=Tang,%20Renjie&rft.date=2024-11-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401592&rft_dat=%3Cproquest_cross%3E3128088254%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2022-a3043aaab9f04b471ebed107debdb094ab39241c60b5dd5c947caccbe614a7953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128088254&rft_id=info:pmid/&rfr_iscdi=true |