Loading…
Minimizers of abstract generalized Orlicz‐bounded variation energy
A way to measure the lower growth rate of φ:Ω×[0,∞)→[0,∞)$$ \varphi :\Omega \times \left[0,\infty \right)\to \left[0,\infty \right) $$ is to require t↦φ(x,t)t−r$$ t\mapsto \varphi \left(x,t\right){t}^{-r} $$ to be increasing in (0,∞)$$ \left(0,\infty \right) $$. If this condition holds with r=1$$ r=...
Saved in:
Published in: | Mathematical methods in the applied sciences 2024-10, Vol.47 (15), p.11795-11809 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A way to measure the lower growth rate of
φ:Ω×[0,∞)→[0,∞)$$ \varphi :\Omega \times \left[0,\infty \right)\to \left[0,\infty \right) $$ is to require
t↦φ(x,t)t−r$$ t\mapsto \varphi \left(x,t\right){t}^{-r} $$ to be increasing in
(0,∞)$$ \left(0,\infty \right) $$. If this condition holds with
r=1$$ r=1 $$, then
infu∈f+W01,φ(Ω)∫Ωφ(x,|∇u|)dx$$ \underset{u\in f+{W}_0^{1,\varphi}\left(\Omega \right)}{\operatorname{inf}}{\int}_{\Omega}\varphi \left(x,|\nabla u|\right)\kern0.1em dx $$
with boundary values
f∈W1,φ(Ω)$$ f\in {W}^{1,\varphi}\left(\Omega \right) $$ does not necessarily have a minimizer. However, if
φ$$ \varphi $$ is replaced by
φp$$ {\varphi}^p $$, then the growth condition holds with
r=p>1$$ r=p>1 $$ and thus (under some additional conditions) the corresponding energy integral has a minimizer. We show that a sequence
(up)$$ \left({u}_p\right) $$ of such minimizers converges when
p→1+$$ p\to {1}^{+} $$ in a suitable
BV$$ \mathrm{BV} $$‐type space involving generalized Orlicz growth and obtain the
Γ$$ \Gamma $$‐convergence of functionals with fixed boundary values and of functionals with fidelity terms. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9042 |